989 resultados para LASER MATERIALS
Resumo:
In this paper we apply a method recently developed by Do and co-workers(1) for the prediction of adsorption isotherms of pure vapors on carbonaceous materials. The information required for the prediction is the pore size distribution and the BET constant, C, of a corresponding nonporous surface (graphite). The dispersive adsorption force is assumed to be the dominant force in adsorption mechanism. This applies to nonpolar and weakly polar hydrocarbons. We test this predictive model against the adsorption data of benzene, toluene, n-pentane, n-hexane, and ethanol on a commercial activated carbon. It is found that the predictions are excellent for all adsorbates tested with the exception of ethanol where the predicted values are about 10% less than the experimental data, and this is probably attributed to the electrostatic interaction between ethanol molecules and the functional groups on the carbon surfaces.
Resumo:
In this paper, we present a model accounting for the adsorbate-adsorbate interaction in the adsorbed phase in the description of adsorption of pure vapors on carbonaceous materials. The details of the adsorbate-adsorbate interaction of a particular species are obtained from the analysis of its adsorption data on non-porous carbon black. The predictability of the model is tested against the adsorption isotherm data for benzene, toluene, n-pentane, n-hexane, carbon tetrachloride, methanol and ethanol on microporous activated carbon. It was found that the model prediction for non-polar adsorbates are satisfactory while it under-predicts for polar adsorbates, which is attributed to their additional interaction with functional groups. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
A technique based on laser light diffraction is shown to be successful in collecting on-line experimental data. Time series of floc size distributions (FSD) under different shear rates (G) and calcium additions were collected. The steady state mass mean diameter decreased with increasing shear rate G and increased when calcium additions exceeded 8 mg/l. A so-called population balance model (PBM) was used to describe the experimental data, This kind of model describes both aggregation and breakage through birth and death terms. A discretised PBM was used since analytical solutions of the integro-partial differential equations are non-existing. Despite the complexity of the model, only 2 parameters need to be estimated: the aggregation rate and the breakage rate. The model seems, however, to lack flexibility. Also, the description of the floc size distribution (FSD) in time is not accurate.
Resumo:
A range of lasers. is now available for use in dentistry. This paper summarizes key current and emerging applications, for lasers in clinical practice. A major diagnostic application of low power lasers is the detection of caries, using fluorescence elicited from hydroxyapatite or from bacterial by-products. Laser fluorescence is an effective method for detecting and quantifying incipient occlusal and cervical,carious lesions, and with further refinement could be used in the, same manner for proximal lesions. Photoactivated dye techniques have been developed which use low power lasers to elicit a photochemical reaction, Photoactivated dye techniques' can be used to disinfect root canals, periodontal pockets, cavity preparations and sites of peri-implantitis. Using similar principles, more powerful lasers tan be used for photodynamic therapy in the treatment of malignancies of the oral mucosa. Laser-driven photochemical reactions can also be used for tooth whitening. In combination with fluoride, laser irradiation can improve the resistance of tooth structure to demineralization, and this application is of particular benefit for susceptible sites in high caries risk patients. Laser technology for caries' removal, cavity preparation and soft tissue surgery is at a high state of refinement, having had several decades of development up to the present time. Used in conjunction with or as a replacement for traditional methods, it is expected that specific laser technologies will become an essential component of contemporary dental practice over the next decade.
Resumo:
This study evaluated the suitability of written materials for stroke survivors and their carers. Twenty stroke survivors and 14 carers were interviewed about the stroke information they had received and their perceptions of the content and presentation of materials of increasing reading difficulty. The mean readability level of materials (grade 9) was higher than participants’ mean reading ability (grade 7–8). Satisfaction with materials decreased as the content became more difficult to read. Seventy-five percent reported that their information needs were not met in hospital. More stroke survivors with aphasia wanted support from health professionals to read and understand written information, and identified simple language, large font size, color, and diagrams to complement the text as being important features of written materials. Simple materials that meet clients’ information needs and design preferences may optimally inform them about stroke.
Resumo:
Low-temperature anneals (1200 degreesC for 40 h) of 8 mol% yttria-stabilised zirconia, prior to the samples being sintered at 1500 degreesC, had the effect of improving the ionic conductivity of the specimens. The presence Of SiO2 in the specimens was shown to be detrimental, however. Irrespective of the SiO2 content, this type of heat treatment also leads to improvements in conductivity. Extensive microstructural analysis provided indication of the mechanism of this phenomenon. This included selective formation of zircon, relief of sintering strain leading to the formation of coherent grain boundaries and segregation effects. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
Background: Provision of health information to people with aphasia is inadequate. Current practice in providing printed health education materials to people with aphasia does not routinely take into consideration their language and associated reading difficulties. Aims: This study aimed to investigate if people with aphasia can comprehend health information contained in printed health education materials and if the application of aphasia-friendly principles is effective in assisting them to comprehend health information. It was hypothesised that participants with aphasia would comprehend significantly more information from aphasia-friendly materials than from existing materials. Other aims included investigating if the effectiveness of the aphasia-friendly principles is related to aphasia severity, if people with aphasia are more confident in responding to health information questions after they have read the aphasia-friendly material, if they prefer to read the aphasia-friendly brochures, and if they prefer to read the brochure type that resulted in the greatest increase in their knowledge. Methods & Procedures: Twelve participants with mild to moderately severe aphasia were matched according to their reading abilities. A pre and post experimental design was employed with repeated measures ANOVA (p
Resumo:
In order to develop a method for use in investigations of spatial biomass distribution in solid-state fermentation systems, confocal scanning laser microscopy was used to determine the concentrations of aerial and penetrative biomass against height and depth above and below the substrate surface, during growth of Rhizopus oligosporus on potato dextrose agar. Penetrative hyphae had penetrated to a depth of 0.445 cm by 64 h and showed rhizoid morphology, in which the maximum biomass concentration, of 4.45 mg dry wt cm(-3), occurred at a depth of 0.075 cm. For aerial biomass the maximum density of 39.54 mg dry wt(-3) occurred at the substrate surface. For both aerial and penetrative biomass, there were two distinct regions in which the biomass concentration decayed exponentially with distance from the surface. For aerial biomass, the first exponential decay region was up to 0.1 cm height. The second region above the height of 0.1 cm corresponded to that in which sporangiophores dominated. This work lays the foundation for deeper studies into what controls the growth of fungal hyphae above and below the surfaces of solid substrates. (C) Wiley Periodicals, Inc.
Resumo:
Different formulations of biodegradable starch-polyester blend nanocomposite materials have been film blown on a pilot scale film blowing tower. The physical properties of different films have been examined by thermal and mechanical analysis and X-ray diffraction. The results show that the addition of an organoclay (from 0 to 5 wt%) significantly improves both the processing and tensile properties over the original starch blends. Wide angle X-ray diffraction (WAXD) results indicate that the best results were obtained for 30wt% starch blends, and the level of delamination depends on the ratio of starch to polyester and amount of organoclay added. The crystallisation temperature of the nanocomposite blends is significantly lower than the base blend. This is probably due to the platelets inhibiting order, and hence crystallisation, of the starch and polyester. The mechanical and thermal properties of the blends are also sensitive to the way the clay particles are dispersed. (C) 2003 Society of Chemical Industry.
Resumo:
We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump pump, Stokes signal, and Raman coherence idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.
Resumo:
The absorption of fluid by unsaturated, rigid porous materials may be characterized by the sorptivity. This is a simple parameter to determine and is increasingly being used as a measure of a material's resistance to exposure to fluids (especially moisture and reactive solutes) in aggressive environments. The complete isothermal absorption process is described by a nonlinear diffusion equation, with the hydraulic diffusivity being a strongly nonlinear function of the degree of saturation of the material. This diffusivity can be estimated from the sorptivity test. In a typical test the cumulative absorption is proportional to the square root of time. However, a number of researchers have observed deviation from this behaviour when the infiltrating fluid is water and there is some potential for chemo-mechanical interaction with the material. In that case the current interpretation of the test and estimation of the hydraulic diffusivity is no longer appropriate. Kuntz and Lavallee (2001) discuss the anomalous behaviour and propose a non-Darcian model as a more appropriate physical description. We present an alternative Darcian explanation and theory that retrieves the earlier advantages of the simple sorptivity test in providing parametric information about the material's hydraulic properties and allowing simple predictive formulae for the wetting profile to be generated.
Resumo:
Three different particular geometrical shapes of parallelepiped, cylinder and sphere were taken from cut green beans (length:diameter = 1:1, 2:1 and 3:1) and potatoes (aspect ratio = 1:1, 2:1 and 3:1) and peas, respectively. Their drying behaviour in a fluidised bed was studied at three different drying temperatures of 30, 40 and 50 degreesC (RH = 15%). Drying curves were constructed using non-dimensional moisture ratio (MR) and time and their behaviour was modelled using exponential (MR = exp(-kt)) and Page (MR = exp(-kt(n))) models. The effective diffusion coefficient of moisture transfer was determined by Fickian method using uni- and three-dimensional moisture movements. The diffusion coefficient was least affected by the size when the moisture movement was considered three-dimensional, whereas the drying temperature had a significative effect on diffusivity as expected. The drying constant and diffusivity coefficients were on the descending order for potato, beans and peas. The Arrhenius activation energy for the peas was also highest, indicating a strong barrier to moisture movement in peas as compared to beans and skinless cut potato pieces. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Onicomicose é a doença ungueal mais frequente, com prevalência estimada entre 2 e 8% da população. As estratégias de tratamentos atuais incluem uso de antifúngicos tópicos e orais, ambos geralmente com baixos índices de cura. Os objetivos deste estudo foram avaliar a resposta terapêutica ao laser Nd:YAG 1.064 nm no tratamento da onicomicose, bem como o método de avaliação clínica dessa terapia e os possíveis efeitos colaterais de seu uso. Foram revisados prontuários de 20 pacientes submetidos à laserterapia. Ao todo, 34 unhas afetadas foram avaliadas de acordo com o Índice de Severidade de Onicomicose (ISO). Esse índice analisa a área de envolvimento da unha, a proximidade da doença com a matriz ungueal, a ocorrência de dermatofitoma e a presença de hiperqueratose subungueal > 2 mm, gerando uma pontuação que classifica a onicomicose como leve, moderada ou grave. A determinação do ISO foi realizada antes do tratamento e após um período de acompanhamento, em média, de oito meses. A comparação entre o ISO Inicial e o ISO Final nas 34 unhas submetidas à laserterapia mostrou diferença significativa, porém, com baixa associação entre essas variáveis. Com relação à área de envolvimento e à pontuação numérica referente ao ISO, houve, no geral, uma redução dessas medidas. Esses dados apontam para uma tendência à melhora da onicomicose por meio do tratamento com o laser Nd:YAG 1.064 nm. O ISO permitiu uma análise clínica adequada da resposta à laserterapia. Os efeitos colaterais locais apresentados durante a aplicação do laser não causaram desconforto acentuado na maioria dos pacientes, demonstrando que o procedimento é bem tolerado.