852 resultados para LARGE-SCALE SYNTHESIS
Resumo:
1. We analysed time-series data from populations of red kangaroos (Macropus rufus, Desmarest) inhabiting four areas in the pastoral zone of South Australia. We formulated a set of a priori models to disentangle the relative effects of the covariates: rainfall, harvesting, intraspecific competition, and domestic herbivores, on kangaroo population-growth rate. 2. The statistical framework allowed for spatial variation in the growth-rate parameters, response to covariates, and environmental variability, as well as spatially correlated error terms due to shared environment. 3. The most parsimonious model included all covariates but no area-specific parameter values, suggesting that kangaroo densities respond in the same way to the covariates across the areas. 4. The temporal dynamics were spatially correlated, even after taking into account the potentially synchronizing effect of rainfall, harvesting and domestic herbivores. 5. Counter-intuitively, we found a positive rather than negative effect of domestic herbivore density on the population-growth rate of kangaroos. We hypothesize that this effect is caused by sheep and cattle acting as a surrogate for resource availability beyond rainfall. 6. Even though our system is well studied, we must conclude that approximating resources by surrogates such as rainfall is more difficult than previously thought. This is an important message for studies of consumer-resource systems and highlights the need to be explicit about population processes when analysing population patterns.
Resumo:
We present 547 optical redshifts obtained for galaxies in the region of the Horologium-Reticulum supercluster (HRS) using the 6 degrees field (6dF) multifiber spectrograph on the UK Schmidt Telescope at the Anglo-Australian Observatory. The HRS covers an area of more than 12 degrees x 12 degrees on the sky centered at approximately alpha = 03(h)19(m), delta = 50 degrees 02'. Our 6dF observations concentrate on the intercluster regions of the HRS, from which we describe four primary results. First, the HRS spans at least the redshift range from 17,000 to 22,500 km s(-1). Second, the overdensity of galaxies in the intercluster regions of the HRS in this redshift range is estimated to be 2.4, or delta rho/(rho) over bar similar to 1: 4. Third, we find a systematic trend of increasing redshift along a southeast-northwest spatial axis in the HRS, in that the mean redshift of HRS members increases by more than 1500 km s(-1) from southeast to northwest over a 12 degrees region. Fourth, the HRS is bimodal in redshift with a separation of similar to 2500 km s(-1) (35 Mpc) between the higher and lower redshift peaks. This fact is particularly evident if the above spatial-redshift trend is fitted and removed. In short, the HRS appears to consist of two components in redshift space, each one exhibiting a similar systematic spatial-redshift trend along a southeast-northwest axis. Lastly, we compare these results from the HRS with the Shapley supercluster and find similar properties and large-scale features.
Resumo:
Recent analyses assert that large marine vertebrates such as marine mammals are now 'functionally or entirely extinct in most coastal ecosystems'. Moreton Bay is a large diverse marine ecosystem bordering the fastest growing area in Australia. The human population is over 1.6 million and increasing yearly by between 10% and 13% with resultant impacts upon the adjoining marine environment. Nonetheless, significant populations of three species of marine mammals are resident within Moreton Bay and a further 14 species are seasonal or occasional visitors. This paper reviews the current and historical distributions and abundance of these species in the context of the current management regime and suggests initiatives to increase the resilience of marine mammal populations to the changes wrought by the burgeoning human population in coastal environments. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
We report on the discovery of a large-scale wall in the direction of Abell 22. Using photometric and spectroscopic data from the Las Campanas Observatory and Anglo-Australian Telescope Rich Cluster Survey, Abell 22 is found to exhibit a highly unusual and striking redshift distribution. We show, by examining the galaxy distributions both in redshift space and on the colour-magnitude plane, that Abell 22 exhibits a foreground wall-like structure. A search for other galaxies and clusters in the nearby region using the 2dF Galaxy Redshift Survey data base suggests that the wall-like structure is a significant large-scale, non-virialized filament which runs between two other Abell clusters either side of Abell 22. The filament stretches over at least > 40 h(-1) Mpc in length and 10 h(-1) Mpc in width at the redshift of Abell 22.
Resumo:
The Great Barrier Reef Marine Park, an area almost the size , of Japan, has a new network of no-take areas that significantly improves the protection of biodiversity. The new marine park zoning implements, in a quantitative manner, many of the theoretical design principles discussed in the literature. For example, the new network of no-take areas has at least 20% protection per bioregion, minimum levels of protection for all known habitats and special or unique features, and minimum sizes for no-take areas of at least 10 or 20 kat across at the smallest diameter Overall, more than 33% of the Great Barrier Reef Marine Park is now in no-take areas (previously 4.5%). The steps taken leading to this outcome were to clarify to the interested public why the existing level of protection wets inadequate; detail the conservation objectives of establishing new no-take areas; work with relevant and independent experts to define, and contribute to, the best scientific process to deliver on the objectives; describe the biodiversity (e.g., map bioregions); define operational principles needed to achieve the objectives; invite community input on all of The above; gather and layer the data gathered in round-table discussions; report the degree of achievement of principles for various options of no-take areas; and determine how to address negative impacts. Some of the key success factors in this case have global relevance and include focusing initial communication on the problem to be addressed; applying the precautionary principle; using independent experts; facilitating input to decision making; conducting extensive and participatory consultation; having an existing marine park that encompassed much of the ecosystem; having legislative power under federal law; developing high-level support; ensuring agency Priority and ownership; and being able to address the issue of displaced fishers.
Resumo:
We address the practical issue of using thermal image data without adjustment or calibration for projects which do not require actual temperatures per se. Large scale airborne scanning in the thermal band at 8.5–13 μm was obtained for a mangrove and salt marsh in subtropical eastern Australia. For open sites, the raw image values were strongly positively correlated with ground level temperatures. For sites under mangrove canopy cover, image values indicated temperatures 2–4°C lower than those measured on the ground. The raw image was useful in identifying water bodies under canopy and has the potential for locating channel lines of deeper water. This could facilitate modification to increase flushing in the system, thereby reducing mosquito larval survival.
Resumo:
Purpose - In many scientific and engineering fields, large-scale heat transfer problems with temperature-dependent pore-fluid densities are commonly encountered. For example, heat transfer from the mantle into the upper crust of the Earth is a typical problem of them. The main purpose of this paper is to develop and present a new combined methodology to solve large-scale heat transfer problems with temperature-dependent pore-fluid densities in the lithosphere and crust scales. Design/methodology/approach - The theoretical approach is used to determine the thickness and the related thermal boundary conditions of the continental crust on the lithospheric scale, so that some important information can be provided accurately for establishing a numerical model of the crustal scale. The numerical approach is then used to simulate the detailed structures and complicated geometries of the continental crust on the crustal scale. The main advantage in using the proposed combination method of the theoretical and numerical approaches is that if the thermal distribution in the crust is of the primary interest, the use of a reasonable numerical model on the crustal scale can result in a significant reduction in computer efforts. Findings - From the ore body formation and mineralization points of view, the present analytical and numerical solutions have demonstrated that the conductive-and-advective lithosphere with variable pore-fluid density is the most favorite lithosphere because it may result in the thinnest lithosphere so that the temperature at the near surface of the crust can be hot enough to generate the shallow ore deposits there. The upward throughflow (i.e. mantle mass flux) can have a significant effect on the thermal structure within the lithosphere. In addition, the emplacement of hot materials from the mantle may further reduce the thickness of the lithosphere. Originality/value - The present analytical solutions can be used to: validate numerical methods for solving large-scale heat transfer problems; provide correct thermal boundary conditions for numerically solving ore body formation and mineralization problems on the crustal scale; and investigate the fundamental issues related to thermal distributions within the lithosphere. The proposed finite element analysis can be effectively used to consider the geometrical and material complexities of large-scale heat transfer problems with temperature-dependent fluid densities.
Resumo:
Virus-like particles (VLPs) are of interest in vaccination, gene therapy and drug delivery, but their potential has yet to be fully realized. This is because existing laboratory processes, when scaled, do not easily give a compositionally and architecturally consistent product. Research suggests that new process routes might ultimately be based on chemical processing by self-assembly, involving the precision manufacture of precursor capsomeres followed by in vitro VLP self-assembly and scale-up to required levels. A synergistic interaction of biomolecular design and bioprocess engineering (i.e. biomolecular engineering) is required if these alternative process routes and, thus, the promise of new VLP products, are to be realized.
Resumo:
This paper provides information on the experimental set-up, data collection methods and results to date for the project Large scale modelling of coarse grained beaches, undertaken at the Large Wave Channel (GWK) of FZK in Hannover by an international group of researchers in Spring 2002. The main objective of the experiments was to provide full scale measurements of cross-shore processes on gravel and mixed beaches for the verification and further development of cross-shore numerical models of gravel and mixed sediment beaches. Identical random and regular wave tests were undertaken for a gravel beach and a mixed sand/gravel beach set up in the flume. Measurements included profile development, water surface elevation along the flume, internal pressures in the swash zone, piezometric head levels within the beach, run-up, flow velocities in the surf-zone and sediment size distributions. The purpose of the paper is to present to the scientific community the experimental procedure, a summary of the data collected, some initial results, as well as a brief outline of the on-going research being carried out with the data by different research groups. The experimental data is available to all the scientific community following submission of a statement of objectives, specification of data requirements and an agreement to abide with the GWK and EU protocols. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Perinatal mortality is very high in Bangladesh. In this setting, few community-level studies have assessed the influence of underlying maternal health factors on perinatal outcomes. We used the data from a community-based clinical controlled trial conducted between 1994 and 1997 in the catchment areas of a large MCH/FP hospital located in Mirpur, a suburban area of Dhaka in Bangladesh, to investigate the levels of perinatal mortality and its associated maternal health factors during pregnancy. A total of 2007 women were followed after recruitment up to delivery, maternal death, or until they dropped out of the study. Of these, 1584 who gave birth formed our study subjects. The stillbirth rate was 39.1 per 1000 births [95% confidence interval (CI) 39.0, 39.3] and the perinatal mortality rate (up to 3 days) was 54.3 per 1000 births [95% CI 54.0, 54.6] among the study population. In the fully adjusted logistic regression model, the risk of perinatal mortality was as high as 2.7 times [95% CI 1.5, 4.9] more likely for women with hypertensive disorders, 5.0 times [95% CI 2.3, 10.8] as high for women who had antepartum haemorrhage and 2.6 times [95% CI 1.2, 5.8] as high for women who had higher haemoglobin levels in pregnancy when compared with their counterparts. The inclusion of potential confounding variables such as poor obstetric history, sociodemographic characteristics and preterm delivery influenced only marginally the net effect of important maternal health factors associated with perinatal mortality. Perinatal mortality in the study setting was significantly associated with poor maternal health conditions during pregnancy. The results of this study point towards the urgent need for monitoring complications in high-risk pregnancies, calling for the specific components of the safe motherhood programme interventions that are designed to manage these complications of pregnancy.
Resumo:
Experimental and theoretical studies have shown the importance of stochastic processes in genetic regulatory networks and cellular processes. Cellular networks and genetic circuits often involve small numbers of key proteins such as transcriptional factors and signaling proteins. In recent years stochastic models have been used successfully for studying noise in biological pathways, and stochastic modelling of biological systems has become a very important research field in computational biology. One of the challenge problems in this field is the reduction of the huge computing time in stochastic simulations. Based on the system of the mitogen-activated protein kinase cascade that is activated by epidermal growth factor, this work give a parallel implementation by using OpenMP and parallelism across the simulation. Special attention is paid to the independence of the generated random numbers in parallel computing, that is a key criterion for the success of stochastic simulations. Numerical results indicate that parallel computers can be used as an efficient tool for simulating the dynamics of large-scale genetic regulatory networks and cellular processes