897 resultados para Knee Kinetics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The kinetics of hydrodeoxygenation of waste cooking oil (WCO) is investigated with unsupported CoMoS catalysts. A kinetic model is established and a comprehensive analysis of each reaction pathway is carried out. The results show that hydrodecarbonylation/decarboxylation (HDC) routes are the predominant reaction pathways in the elimination of oxygen, with the rate constant three times as high as that of hydrodeoxygenation (HDO). However, the HDC activity of the CoMoS catalyst deactivates due to gradual loss of sulfur from the catalyst. HDO process is insensitive to the sulfur deficiency. The kinetic modeling shows that direct hydrodecarbonylation of fatty acids dominates the HDC routes and, in the HDO route, fatty acids are transferred to aldehydes/alcohols and then to C-18 hydrocarbons, a final product, and the reduction of acids is the rate limiting step. The HDO route via alcohols is dominant over aldehydes due to a significantly higher reaction rate constant. The difference of C-18/C-17 ratio in unsupported and supported catalysts show that a support with Lewis acid sites may play an important role in the selectivity for the hydrodeoxygenation pathways and promoting the final product quality

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A brief, historical overview of 10 apparently different, although in some cases, upon inspection, closely related, popular proposed reaction mechanisms and their associated rate equations, is given and in which the rate expression for each mechanism is derived from basic principles, Appendix A. In Appendix B, each of the 5 main mechanisms are tested using datasets, comprising initial reaction rate vs. organic pollutant concentration, [P] and incident irradiance, ρ, data, reported previously for TiO2, where P is phenol, 4-chlorophenol and formic acid. The best of those tested, in terms of overall fit, simplicity, usefulness and versatility is the disrupted adsorption kinetic model proposed by Ollis. The usual basic assumptions made in constructing these mechanisms are reported and the main underlying concerns explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mitochondrial complex I is a large, membrane-bound enzyme central to energy metabolism, and its dysfunction is implicated in cardiovascular and neurodegenerative diseases. An interesting feature of mammalian complex I is the so-called A/D transition, when the idle enzyme spontaneously converts from the active (A) to the de-active, dormant (D) form. The A/D transition plays an important role in tissue response to ischemia and rate of the conversion can be a crucial factor determining outcome of ischemia/reperfusion. Here, we describe the effects of alkali cations on the rate of the D-to-A transition to define whether A/D conversion may be regulated by sodium.At neutral pH (7–7.5) sodium resulted in a clear increase of rates of activation (D-to-A conversion) while other cations had minor effects. The stimulating effect of sodium in this pH range was not caused by an increase in ionic strength. EIPA, an inhibitor of Na+/H+antiporters, decreased the rate of D-to-A conversion and sodium partially eliminated this effect of EIPA. At higher pH (> 8.0), acceleration of the D-to-A conversion by sodium was abolished, and all tested cations decreased the rate of activation, probably due to the effect of ionic strength.The implications of this finding for the mechanism of complex I energy transduction and possible physiological importance of sodium stimulation of the D-to-A conversion at pathophysiological conditions in vivo are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Uptake kinetics of arsenate were determined in arsenate tolerant and non-tolerant clones of the grass Deschampsia cespitosa under differing root phosphorus status to investigate the mechanism controlling the suppression of arsenate influx observed in tolerant clones. Influx was always lower in tolerants compared to non-tolerants. Short term influx of arsenate by the high affinity uptake system in both tolerant clones was relatively insensitive to root phosphorus status. This was in contrast to the literature where the regulation of the phosphate (arsenate) uptake system is normally much more responsive to plant phosphorus status. The low affinity uptake system in both tolerant and non-tolerant clones, unlike the high affinity uptake system, was more closely regulated by root phosphate status and was repressed to a much greater degree under increasing root phosphorus levels than the high affinity system. © 1994 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biomass and phosphorus allocation were determined in arsenate tolerant and non-tolerant clones of the grass Holcus lanatus L. in both solution culture and in soil. Arsenate is a phosphate analogue and is taken up by the phosphate uptake system. Tolerance to arsenate in this grass is achieved by suppression of arsenate (and phosphate) influx. When clones differing in their arsenate tolerance were grown in solution culture with a range of phosphate levels, a tolerant clone did not fare as well as a non-tolerant at low levels of phosphate nutrition in that it had reduced shoot biomass production, increased biomass allocation to the roots and lower shoot phosphorus concentration. At a higher level of phosphate nutrition there was little or no difference in these parameters, suggesting that differences at lower levels of phosphate nutrition were due solely to differences in the rates of phosphate accumulation. In experiments in sterile soil (potting compost) the situation was more complicated with tolerant plants having lower growth rates but higher phosphorus concentrations. The gene for arsenate tolerance is polymorphic in arsenate uncontaminated populations. When phosphorus concentration of tolerant phenotypes was determined in one such population, again tolerants had a higher phosphorus status than non-tolerants. Tolerants also had higher rates of vesicular-arbuscular mycorrhizal (VAM) infection. The ecological implications of these results are that it appears that suppression of the high affinity uptake system, is at least in part, compensated by increased mycorrhizal infection. © 1994 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose The aim of this study is to improve the drug release properties of antimicrobial agents from hydrophobic biomaterials using using an ion pairing strategy. In so doing antimicrobial agents may be eluted and maintained over a sufficient time period thereby preventing bacterial colonisation and subsequent biofilm formation on medical devices. Methods The model antimicrobial agent was chlorhexidine and the selected fatty acid counter ions were capric acid, myristic acid and stearic acid. The polymethyl methacrylate films were loaded with 2% of fatty acid:antimicrobial agent at the following molar ratios; 0.5:1M, 1:1M and 2:1M and thermally polymerized using azobisisobutyronitrile initiator. Drug release experiments were subsequently performed over a 3-month period and the mass of drug released under sink conditions (pH 7.0, 37oC) quantified using a validated HPLC-UV method. Results In all platforms, a burst of chlorhexidine release was observed over the initial 24-hour period. Similar release kinetics were observed between the formulations during the initial 28 days. However, as time progressed, the chlorhexidine baseline plateaued after 56 days whereas formulations containing the counterions appeared to continuously elute linearly with time. As can be observed in figure 1, the rank order of total chlorhexidine release in the presence of 0.5M fatty acid was myristic acid (40%) > capric acid (35%) > stearic acid (30%)> chlorhexidine baseline (15%). Conclusion The incorporation of fatty acids within the formulation significantly improved chlorhexidine solubility within both the monomer and the polymer and enhanced the drug release kinetics over the period of study. This is attributed to the greater diffusivity of chlorhexidine through PMMA in the presence of fatty acids. In th absence of fatty acids, chlorhexidine release was facilitated by dissolution of surface associated drug particles. This study has illustrated the ability of fatty acids to modulate chlorhexidine release from a model biomaterial through enhanced diffusivity. This strategy may prove advantageous for improved medical devices with enhanced resistance to infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The nature and kinetics of plasmid DNA damage after DNA exposure to a kHz-driven atmospheric pressure nonthermal plasma jet has been investigated. Both single-strand break (SSB) and double-strand break (DSB) processes are reported here. While SSB had a higher rate constant, DSB is recognized to be more significant in living systems, often resulting in loss of viability. In a helium-operated plasma jet, adding oxygen to the feed gas resulted in higher rates of DNA DSB, which increased linearly with increasing oxygen content, up to an optimum level of 0.75% oxygen, after which the DSB rate decreased slightly, indicating an essential role for reactive oxygen species in the rapid degradation of DNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: This study investigated the effect of socioeconomic deprivation on preoperative disease and outcome following unicompartmental knee replacement (UKR).

METHODS: 307 Oxford UKRs implanted between 2008 and 2013 under the care of one surgeon using the same surgical technique were analysed. Deprivation was quantified using the Northern Ireland Multiple Deprivation Measure. Preoperative disease severity and postoperative outcome were measured using the Oxford Knee Score (OKS).

RESULTS: There was no difference in preoperative OKS between deprivation groups. Preoperative knee range of motion (ROM) was significantly reduced in more deprived patients with 10° less ROM than least deprived patients. Postoperatively there was no difference in OKS improvement between deprivation groups (p=0.46), with improvements of 19.5 and 21.0 units in the most and least deprived groups respectively. There was no significant association between deprivation and OKS improvement on unadjusted or adjusted analysis. Preoperative OKS, Short Form 12 mental component score and length of stay were significant independent predictors of OKS improvement. A significantly lower proportion of the most deprived group (15%) reported being able to walk an unlimited distance compared to the least deprived group (41%) one year postoperatively.

CONCLUSION: More deprived patients can achieve similar improvements in OKS to less deprived patients following UKR.

LEVEL OF EVIDENCE: 2b - retrospective cohort study of prognosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance data for a dye based, regenerable oxygen sensor (Mills and Lawrie [1], Mills et al. [2]) are analyzed to develop useful kinetic models for sensor photoactivation (dye reduction) and dark, oxygen detection (dye oxidation). The titania loaded, thin film sensor exhibits an apparent first order photoactivation of the dye, which we demonstrate (Section 3.2 and Fig. 4) is due to a kinetic disguise of a zero order photoreaction occurring through a non-uniformly illuminated sensor film. The observed zero order, slow recovery due to dye oxidation by dioxygen (O2 detection) appears best rationalized by a model assuming a near O2-impermeable skin developing on the sensor surface as solvent is evaporatively removed following sensor film casting and curing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The photocatalytic reactor described in the NOx removal ISO 22197-1:2007 is used to study the kinetics of the process, using a film of P25 TiO2 which has either been conventionally pre-irradiated in a stream of air, or unconventionally in a stream of NO (1 ppmv). In the former case it is shown that the system does not achieve steady state exit levels of NO, probably due to the gradual accumulation of HNO3 on the surface of the photocatalyst. The NO-preconditioned TiO2 film demonstrated excellent steady-state levels when monitored as a function of NO concentration, [NO] and UV irradiance, ρ. However, in this case the photocatalytic reaction under study is NOT NOx removal, but the conversion of NO to NO2. It is shown that the kinetics of this steady state process fit very well to a kinetic expression based on a disrupted adsorption reaction mechanism, which has also been used by others to fit their observed (non-steady state) kinetics for NOx removal on conventionally-(air) preconditioned films of P25. The appropriateness of this model for either system is questioned, since in both systems the kinetics appear to have a significant mass transport element. These findings suggest that mass transport and non-steady-state kinetics are likely to be significant features for most active photocatalytic samples, where the %NO conversion is >7%, and so limits the usefulness of the NOx removal ISO 22197-1:2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knee adduction moment (KAM) during gait has been proposed as an indirect measure of dynamic knee joint loading and has been reported to be higher in obese children [1, 2]. The KAM is primarily calculated from the resultant ground reaction force (GRF) and the lever arm length, both of which can be manipulated through weight-loss or medical interventions [1]. However, there is little data on the relationships between the mechanical, anthropometric and gait contributors to the KAM during paediatric gait. The objectives of the study were to examine the associations with the first (1st) and second (2nd) peak KAM (pKAM) and: (1) centre of pressure (CoP), KAM lever arm length, vertical and mediolateral ground reaction forces (GRF) and, (2) fat mass, height, step width, foot rotation, knee rotation and walking velocity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Osteoarthritis (OA) is one of the leading causes of pain and disability among older adults, particularly women. Pain and mobility disability are major consequences of knee OA which and can interfere with the functional autonomy of elderly and thus, making it difficult to perform activities of daily living. Evidence suggests that obesity is strongly linked to knee OA and that non­pharmacological therapy should be based on physical activity and weight loss in case of overweight and obesity. A positive relationship between adherence to the Mediterranean diet and health outcomes has been widely discussed in scientific literature, including its potential benefits in weight loss.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the feasibility of conducting a randomized controlled trial comparing group-based outpatient physiotherapy with usual care in patients following total knee replacement. Design: A feasibility study for a randomized controlled trial. Setting: One secondary-care hospital orthopaedic centre, Bristol, UK. Participants: A total of 46 participants undergoing primary total knee replacement. Interventions: The intervention group were offered six group-based exercise sessions after surgery. The usual care group received standard postoperative care. Participants were not blinded to group allocation. Outcome measures: Feasibility was assessed by recruitment, reasons for non-participation, attendance, and completion rates of study questionnaires that included the Lower Extremity Functional Scale and Knee Injury and Osteoarthritis Outcome Score. Results: Recruitment rate was 37%. Five patients withdrew or were no longer eligible to participate. Intervention attendance was high (73%) and 84% of group participants reported they were ‘very satisfied’ with the exercises. Return of study questionnaires at six months was lower in the usual care (75%) than in the intervention group (100%). Mean (standard deviation) Lower Extremity Functional Scale scores at six months were 45.0 (20.8) in the usual care and 57.8 (15.2) in the intervention groups. Conclusion: Recruitment and retention of participants in this feasibility study was good. Group-based physiotherapy was acceptable to participants. Questionnaire return rates were lower in the usual care group, but might be enhanced by telephone follow-up. The Lower Extremity Functional Scale had high responsiveness and completion rates. Using this outcome measure, 256 participants would be required in a full-scale randomized controlled trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: The purpose of this study was to develop a mathematical model (sine model, SIN) to describe fat oxidation kinetics as a function of the relative exercise intensity [% of maximal oxygen uptake (%VO2max)] during graded exercise and to determine the exercise intensity (Fatmax) that elicits maximal fat oxidation (MFO) and the intensity at which the fat oxidation becomes negligible (Fatmin). This model included three independent variables (dilatation, symmetry, and translation) that incorporated primary expected modulations of the curve because of training level or body composition. METHODS: Thirty-two healthy volunteers (17 women and 15 men) performed a graded exercise test on a cycle ergometer, with 3-min stages and 20-W increments. Substrate oxidation rates were determined using indirect calorimetry. SIN was compared with measured values (MV) and with other methods currently used [i.e., the RER method (MRER) and third polynomial curves (P3)]. RESULTS: There was no significant difference in the fitting accuracy between SIN and P3 (P = 0.157), whereas MRER was less precise than SIN (P < 0.001). Fatmax (44 +/- 10% VO2max) and MFO (0.37 +/- 0.16 g x min(-1)) determined using SIN were significantly correlated with MV, P3, and MRER (P < 0.001). The variable of dilatation was correlated with Fatmax, Fatmin, and MFO (r = 0.79, r = 0.67, and r = 0.60, respectively, P < 0.001). CONCLUSIONS: The SIN model presents the same precision as other methods currently used in the determination of Fatmax and MFO but in addition allows calculation of Fatmin. Moreover, the three independent variables are directly related to the main expected modulations of the fat oxidation curve. SIN, therefore, seems to be an appropriate tool in analyzing fat oxidation kinetics obtained during graded exercise.