881 resultados para Jerusalem
Resumo:
Theoretischer Hintergrund und Fragestellung: Schulische Tests dienen der Feststellung von Wissen und Können. Wie jede Messung kann auch diese durch Störvariablen verzerrt werden. Während Tests erlebte Angst ist ein solcher potentieller Störeinfluss: Angst kann Testleistungen beinträchtigen, da sie sich hinderlich auf die Informationsverarbeitung auswirken kann (Störung des Wissensabrufs und des Denkens; Zeidner, 1998). Dieser kognitiven Angstmanifestation (Rost & Schermer, 1997) liegt die angstbedingte automatische Aufmerksamkeitsorientierung auf aufgaben-irrelevante Gedanken während der Testbearbeitung zugrunde (Eysenck, Derakshan, Santos & Calvo, 2007). Es hat sich allerdings gezeigt, dass Angst nicht grundsätzlich mit Testleistungseinbußen einhergeht (Eysenck et al., 2007). Wir gehen davon aus, dass die Kapazität zur Selbstkontrolle bzw. Aufmerksamkeitsregulation (Baumeister, Muraven & Tice, 2000; Schmeichel & Baumeister, 2010) ein Faktor ist, der bedingt, wie stark kognitive Angstmanifestation während Tests und damit zusammenhängende Leistungseinbußen auftreten. Ängstliche Lernende mit höherer Aufmerksamkeitsregulationskapazität sollten ihrer automatischen Aufmerksamkeitsorientierung auf aufgaben-irrelevante Gedanken erfolgreicher entgegensteuern und ihre Aufmerksamkeit weiterhin auf die Aufgabenbearbeitung richten können. Dem entsprechend sollten sie trotz Angst weniger kognitive Angstmanifestation während Tests erleben als ängstliche Lernende mit geringerer Aufmerksamkeitsregulationskapazität. Auch die Selbstwirksamkeitserwartung und das Selbstwertgefühl sind Variablen, die in der Vergangenheit mit der Bewältigung von Angst und Stress in Verbindung gebracht wurden (Bandura, 1977; Baumeister, Campbell, Krueger & Vohs, 2003). Daher wurden diese Variablen als weitere Prädiktoren berücksichtigt. Es wurde die Hypothese getestet, dass die dispositionelle Aufmerksamkeitsregulationskapazität über die dispositionelle Selbstwirksamkeitserwartung und das dispositionelle Selbstwertgefühl hinaus Veränderungen in der kognitiven Angstmanifestation während Mathematiktests in einer Wirtschaftsschülerstichprobe vorhersagt. Es wurde des Weiteren davon ausgegangen, dass eine indirekte Verbindung zwischen der Aufmerksamkeitsregulationskapazität und der Veränderung in den Mathematiknoten, vermittelt über die Veränderung in der kognitiven Angstmanifestation, besteht. Methode: Einhundertachtundfünfzig Wirtschaftsschüler bearbeiteten im September 2011 (T1) einen Fragebogen, der die folgenden Messungen enthielt:-Subskala Kognitive Angstmanifestation aus dem Differentiellen Leistungsangstinventar (Rost & Schermer, 1997) bezogen auf Mathematiktests (Sparfeldt, Schilling, Rost, Stelzl & Peipert, 2005); Alpha = .90; -Skala zur dispositionellen Aufmerksamkeitsregulationskapazität (Bertrams & Englert, 2013); Alpha = .88; -Skala zur Selbstwirksamkeitserwartung (Schwarzer & Jerusalem, 1995); Alpha = .83; -Skala zum Selbstwertgefühl (von Collani & Herzberg, 2003); Alpha = .83; -Angabe der letzten Mathematikzeugnisnote. Im Februar 2012 (T2), also nach 5 Monaten und kurz nach dem Erhalt des Halbjahreszeugnisses, gaben die Schüler erneut ihre kognitive Angstmanifestation während Mathematiktests (Alpha = .93) und ihre letzte Mathematikzeugnisnote an. Ergebnisse: Die Daten wurden mittels Korrelationsanalyse, multipler Regressionsanalyse und Bootstrapping ausgewertet. Die Aufmerksamkeitsregulationskapazität, die Selbstwirksamkeitserwartung und das Selbstwertgefühl (alle zu T1) waren positiv interkorreliert, r= .50/.59/.59. Diese Variablen wurden gemeinsam als Prädiktoren in ein Regressionsmodell zur Vorhersage der kognitiven Angstmanifestation zu T2 eingefügt. Gleichzeitig wurde die kognitive Angstmanifestation zu T1 konstant gehalten. Es zeigte sich, dass die Aufmerksamkeitsregulationskapazität erwartungskonform die Veränderungen in der kognitiven Angstmanifestation vorhersagte, Beta = -.21, p= .02. Das heißt, dass höhere Aufmerksamkeitsregulationskapazität zu T1 mit verringerter kognitiver Angstmanifestation zu T2 einherging. Die Selbstwirksamkeitserwartung, Beta = .12, p= .14, und das Selbstwertgefühl, Beta = .05, p= .54, hatten hingegen keinen eigenen Vorhersagewert für die Veränderungen in der kognitiven Angstmanifestation. Des Weiteren ergab eine Mediationsanalyse mittels Bootstrapping (bias-corrected bootstrap 95% confidence interval, 5000 resamples; siehe Hayes & Scharkow, in press), dass die Aufmerksamkeitsregulationskapazität (T1), vermittelt über die Veränderung in der kognitiven Angstmanifestation, indirekt mit der Veränderung in der Mathematikleistung verbunden war (d.h. das Bootstrap-Konfidenzintervall schloss nicht die Null ein; CI [0.01, 0.24]). Für die Selbstwirksamkeitserwartung und das Selbstwertgefühl fand sich keine analoge indirekte Verbindung zur Mathematikleistung. Fazit: Die Befunde verweisen auf die Bedeutsamkeit der Aufmerksamkeitsregulationskapazität für die Bewältigung kognitiver Angstreaktionen während schulischer Tests. Losgelöst von der Aufmerksamkeitsregulationskapazität scheinen positive Erwartungen und ein positives Selbstbild keine protektive Wirkung hinsichtlich der leistungsbeeinträchtigenden kognitiven Angstmanifestation während Mathematiktests zu besitzen.
Resumo:
fun ... (Yôsēf Sôfēr) ...
Resumo:
Digitalisat der Ausg. [S.l.], 1862
Resumo:
traie iberṭragen ois der Gemore Giṭin fon Lipman Lešṭšinski
Resumo:
Digitalisat der Ausg. [Jerusalem], [1964/65]
Resumo:
by A. Goldfaden. Arr. for violin by Henry A. Russotta
Resumo:
Für Klavier solo, ohne Gesang und ohne Text
Resumo:
Currently several thousands of objects are being tracked in the MEO and GEO regions through optical means. The problem faced in this framework is that of Multiple Target Tracking (MTT). In this context both, the correct associations among the observations and the orbits of the objects have to be determined. The complexity of the MTT problem is defined by its dimension S. The number S corresponds to the number of fences involved in the problem. Each fence consists of a set of observations where each observation belongs to a different object. The S ≥ 3 MTT problem is an NP-hard combinatorial optimization problem. There are two general ways to solve this. One way is to seek the optimum solution, this can be achieved by applying a branch-and- bound algorithm. When using these algorithms the problem has to be greatly simplified to keep the computational cost at a reasonable level. Another option is to approximate the solution by using meta-heuristic methods. These methods aim to efficiently explore the different possible combinations so that a reasonable result can be obtained with a reasonable computational effort. To this end several population-based meta-heuristic methods are implemented and tested on simulated optical measurements. With the advent of improved sensors and a heightened interest in the problem of space debris, it is expected that the number of tracked objects will grow by an order of magnitude in the near future. This research aims to provide a method that can treat the correlation and orbit determination problems simultaneously, and is able to efficiently process large data sets with minimal manual intervention.
Resumo:
The Astronomical Institute of the University of Bern (AIUB) is conducting several search campaigns for space debris using optical sensors. The debris objects are discovered during systematic survey observations. In general, the result of a discovery consists in only a short observation arc, or tracklet, which is used to perform a first orbit determination in order to be able to observe t he object again in subsequent follow-up observations. The additional observations are used in the orbit improvement process to obtain accurate orbits to be included in a catalogue. In order to obtain the most accurate orbit within the time available it is necessary to optimize the follow-up observations strategy. In this paper an in‐depth study, using simulations and covariance analysis, is performed to identify the optimal sequence of follow-up observations to obtain the most accurate orbit propagation to be used for the space debris catalogue maintenance. The main factors that determine the accuracy of the results of an orbit determination/improvement process are: tracklet length, number of observations, type of orbit, astrometric error of the measurements, time interval between tracklets, and the relative position of the object along its orbit with respect to the observing station. The main aim of the covariance analysis is to optimize the follow-up strategy as a function of the object-observer geometry, the interval between follow-up observations and the shape of the orbit. This an alysis can be applied to every orbital regime but particular attention was dedicated to geostationary, Molniya, and geostationary transfer orbits. Finally the case with more than two follow-up observations and the influence of a second observing station are also analyzed.
Resumo:
The population of space debris increased drastically during the last years. These objects have become a great threat for active satellites. Because the relative velocities between space debris and satellites are high, space debris objects may destroy active satellites through collisions. Furthermore, collisions involving massive objects produce large number of fragments leading to significant growth of the space debris population. The long term evolution of the debris population is essentially driven by so-called catastrophic collisions. An effective remediation measure in order to stabilize the population in Low Earth Orbit (LEO) is therefore the removal of large, massive space debris. To remove these objects, not only precise orbits, but also more detailed information about their attitude states will be required. One important property of an object targeted for removal is its spin period, spin axis orientation and their change over time. Rotating objects will produce periodic brightness variations with frequencies which are related to the spin periods. Such a brightness variation over time is called a light curve. Collecting, but also processing light curves is challenging due to several reasons. Light curves may be undersampled, low frequency components due to phase angle and atmospheric extinction changes may be present, and beat frequencies may occur when the rotation period is close to a multiple of the sampling period. Depending on the method which is used to extract the frequencies, also method-specific properties have to be taken into account. The astronomical Institute of the University of Bern (AIUB) light curve database will be introduced, which contains more than 1,300 light curves acquired over more than seven years. We will discuss properties and reliability of different time series analysis methods tested and currently used by AIUB for the light curve processing. Extracted frequencies and reconstructed phases for some interesting targets, e.g. GLONASS satellites, for which also SLR data were available for the period confirmation, will be presented. Finally we will present the reconstructed phase and its evolution over time of a High-Area-to-Mass-Ratio (HAMR) object, which AIUB observed for several years.
Resumo:
Edmund Jerusalem
Resumo:
Edmund Jerusalem
Resumo:
This paper provides standardized estimates of labor productivity in arable farming in selected regions of the early Ottoman Empire, including Jerusalem and neighboring districts in eastern Mediterranean; Bursa and Malatya in Anatolia; and Thessaly, Herzegovina, and Budapest in eastern Europe. I use data from the tax registers of the Ottoman Empire to estimate grain output per worker, standardized (in bushels of wheat equivalent) to allow productivity comparisons within these regions and with other times and places. The results suggest that Ottoman agriculture in the fifteenth and sixteenth centuries had achieved levels of labor productivity that compared favorably even with most European countries circa 1850.
Resumo:
Wilhelm Jerusalem