932 resultados para Interoperability of Applications
Resumo:
Wireless sensor networks and its applications have been widely researched and implemented in both commercial and non commercial areas. The usage of wireless sensor network has developed its market from military usage to daily use of human livings. Wireless sensor network applications from monitoring prospect are used in home monitoring, farm fields and habitant monitoring to buildings structural monitoring. As the usage boundaries of wireless sensor networks and its applications are emerging there are definite ongoing research, such as lifetime for wireless sensor network, security of sensor nodes and expanding the applications with modern day scenarios of applications as web services. The main focus in this thesis work is to study and implement monitoring application for infrastructure based sensor network and expand its usability as web service to facilitate mobile clients. The developed application is implemented for wireless sensor nodes information collection and monitoring purpose enabling home or office environment remote monitoring for a user.
Resumo:
Since its introduction, fuzzy set theory has become a useful tool in the mathematical modelling of problems in Operations Research and many other fields. The number of applications is growing continuously. In this thesis we investigate a special type of fuzzy set, namely fuzzy numbers. Fuzzy numbers (which will be considered in the thesis as possibility distributions) have been widely used in quantitative analysis in recent decades. In this work two measures of interactivity are defined for fuzzy numbers, the possibilistic correlation and correlation ratio. We focus on both the theoretical and practical applications of these new indices. The approach is based on the level-sets of the fuzzy numbers and on the concept of the joint distribution of marginal possibility distributions. The measures possess similar properties to the corresponding probabilistic correlation and correlation ratio. The connections to real life decision making problems are emphasized focusing on the financial applications. We extend the definitions of possibilistic mean value, variance, covariance and correlation to quasi fuzzy numbers and prove necessary and sufficient conditions for the finiteness of possibilistic mean value and variance. The connection between the concepts of probabilistic and possibilistic correlation is investigated using an exponential distribution. The use of fuzzy numbers in practical applications is demonstrated by the Fuzzy Pay-Off method. This model for real option valuation is based on findings from earlier real option valuation models. We illustrate the use of number of different types of fuzzy numbers and mean value concepts with the method and provide a real life application.
Resumo:
Opinnäytetyö keskittyi kriittisiin tapahtumiin, joita on tullut yhtiön tai sen edeltävän yhtiön, joka oli Mobile Screen TV – 4 ALL, tekemien aikaisempien patenttihakemusten yhteydessä . Tutkimus vertasi ja evaluoi yhtiön aikaisemmin tekemien keksintöjen suojausta. Toisaalta opinnäytetyön päämäärä oli tutkia ja selvittää monitapaus-menetelmällä yhtiön aikaisempia keksintöjä ja miten aineettoman oikeuden suojaus toteutui prosessien eri vaiheissa. Tämä päättötyötutkielma vei loppuun asti erittäin suuren patenttien ja hyödyllisyysmallien hakemusten tutkimuksen. LH Communications Oy on tehnyt monia niistä, mutta tutkimus sisälsi myös joitakin kilpailijoiden hakemuksia. Tässä tutkimuksessa oli kaksi pääkysymystä. Miten pieni yhtiö voisi suojella heidän uusia ideoitaan ja keksintöjään ja myös samalla pitää yhtiön talouden hyvällä tasolla. Tämä tutkimus käytti The Critical Incidents Technique (CIT), joka keskittyy kriittisiin tapahtumiin, selvittääkseen sopivia menetelmiä pienelle yhtiölle siitä, miten suojella uusia ajatuksia, ideoita ja keksintöjä ja samanaikaisesti olla tuottava niiden kanssa. Tutkimuksemme käsitteli kaikenlaisia tarvittavia käytäntöjä pienessä yhtiössä ja päähuomio pienessä yhtiössä tulee olla omien keksintöjen suojaamisessa. Paras suojaus on tehdä patentteja, mutta se tulee maksamaan hyvin paljon koko tapahtumasarjan aikana.
Resumo:
Tämä diplomityö käsittelee Lappeenrannan teknillisen yliopiston ja Etelä- Karjalan poliisilaitoksen yhteistä kehitysprojektia, jonka tavoitteena oli tuottaa käytäntöön vietävissä oleva kehittämissuunnitelma ulkomaalaislupa-asioiden läpäisyaikojen hallintaan. Kehitysalueita on pyritty löytämään poliisilaitoksen henkilöstön haastatteluilla ja prosessianalyyseilla. Työ sisältää teoriaosion määräaikahallinnasta, yleiskatsauksen ulkomaalaislupa-asioista Suomessa sekä selvityksen ulkomaalaislupa-asioiden tilanteesta Etelä-Karjalan poliisilaitoksella. Työssä muodostettiin kolme kehittämisteemaa: seurannan kehittäminen, prosessien ja työtapojen kehittäminen ja yhteistyön kehittäminen. Tärkein kehittämistoimi oli Excel-pohjaisen seurantajärjestelmän suunnittelu, rakentaminen ja käyttöönottaminen. Seurantajärjestelmää voidaan hyödyntää tehtävien päivittäisessä ohjauksessa, määräaikatavoitteiden toteutumisen seurannassa sekä tilannekuvan ylläpitämisessä. Tavoitetilanteessa seurantajärjestelmän avulla hallitaan tilannetta siten, että hallitsemattomia hakemusruuhkia ei synny. Hankkeesta saatuja kokemuksia tehtäväjonojen hallinnasta ja suorituskyvyn mittaamisesta voidaan ajatella hyödynnettävän myös muissa prosesseissa.
Resumo:
Opinnäytetyö on osa Arctic Materials Technologies Development -projektia, jonka tavoitteena on kehittää perusteita arktisten alueiden sovelluksiin suunnittelun ja valmistuksen kannalta. Arktisella alueella sijaitsee useita potentiaalisia öljy- ja maakaasuesiintymiä, joiden hyödyn-täminen tulee vuosi vuodelta kannattavammaksi ilmaston lämpenemisestä johtuvan merijään heikkenemisen vuoksi. Alin suunnittelulämpötila arktisilla alueilla on -60 °C, mikä aiheuttaa haasteita sekä materiaalinvalinnalle että hitsaukselle. Ferriittisillä teräksillä esiintyy lämpötilasta riippuvaa sitkeyden vaihtelua, jota kutsutaan transi-tiokäyttäytymiseksi. Lämpötilan laskiessa teräksen iskusitkeys sekä murtumissitkeys laske-vat. Arktisissa sovelluskohteissa käytetään yleisesti niukkaseosteisia, mikroseostettuja hie-noraeteräksiä, joille on ominaista erinomaiset sitkeys-, lujuus- sekä hitsattavuusominaisuudet vaativissakin olosuhteissa. Lujat termomekaanisesti valssatut ja nuorrutetut hienoraeteräkset kattavat myötölujuusluokat 355…700 MPa. Tutkimuksissa on saatu vaihtelevia tuloksia ma-teriaalien isku- ja murtumissitkeydestä -60 °C:ssa. Erityisesti sitkeysominaisuudet hitsiaineen ja muutosvyöhykkeen alueiden välillä ovat vaihtelevia. Pienemmällä lämmöntuonnilla ja seostetuilla lisäaineilla saavutetaan kuitenkin pääsääntöisesti parempia sitkeysarvoja. Asiku-laarinen ferriitti sekä alabainiitti ovat toivottavia mikrorakenteita liitoksessa, niiden pienen raekoon johdosta.
Resumo:
Tutkimuksen tarkoituksena on ollut arvioida ja kehittää tuotelaadunhallintamalli taajuusmuuttajien elinkaaripalveluja tarjoavassa ABB Oy, Drives, Drives Service liiketoimintayksikössä. ABB:n valmistamat taajuusmuuttajat säätävät asiakkaiden prosesseja ympäri maailman useissa erityyppisissä sovelluksissa. Vanhimmat varaosatuen piirissä olevat asennukset ovat 1980-luvulta. Aluksi työssä tarkastellaan niitä elementtejä, joista laatu muodostuu eli kokemusperäisiä elementtejä sekä kvantitatiivisia attribuutteja. Yhteistä molemmille on, että niitä voidaan aktiivisesti monitoroida ja hallita. Laadun hallitsemiseksi verkostoituneessa toimintaympäristössä tarvitaan ymmärrystä liiketoimintaverkostoista ja erilaisien komponenttitoimittajien ja jakeluverkostojen markkinakentästä. Laatua ja liiketoimintaverkostoja käsittelevien osuuksien jälkeen pureudutaan kunnossapitoon ja sen lainalaisuuksiin. Lopuksi muodostetaan varaosaliiketoimintaa tukeva tuotelaadunhallintamalli, joka pyrkii peilaamaan erilaisien viitekehysten avulla tarkoituksen mukaista toimintamallia varaosatoimitusten tuotelaadun vaalimiseksi.
Resumo:
Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.
Resumo:
Nowadays biomass transformation has a great potential for the synthesis of value-added compounds with a wide range of applications. Terpenoids, extracted from biomass, are inexpensive and renewable raw materials which often have a biological activity and are widely used as important organic platform molecules in the development of new medicines as well as in the synthesis of fine chemicals and intermediates. At the same time, special attention is devoted to the application of gold catalysts to fine chemical synthesis due to their outstanding activity and/or selectivity for transformations of complex organic compounds. Conversion of renewable terpenoids in the presence of gold nanoparticles is one of the new and promising directions in the transformation of biomass to valuable chemicals. In the doctoral thesis, different kinds of natural terpenoids, such as α-pinene, myrtenol and carvone were selected as starting materials. Gold catalysts were utilized for the promising routes of these compounds transformation. Investigation of selective α-pinene isomerization to camphene, which is an important step in an industrial process towards the synthesis of camphor as well as other valuable substrates for the pharmaceutical industry, was performed. A high activity of heterogeneous gold catalysts in the Wagner-Meerwein rearrangement was demonstrated for the first time. Gold on alumina carrier was found to reach the α-pinene isomerization conversion up to 99.9% and the selectivity of 60-80%, thus making this catalyst very promising from an industrial viewpoint. A detailed investigation of kinetic regularities including catalyst deactivation during the reaction was performed. The one-pot terpene alcohol amination, which is a promising approach to the synthesis of valuable complex amines having specific physiological properties, was investigated. The general regularities of the one-pot natural myrtenol amination in the presence of gold catalysts as well as a correlation between catalytic activity, catalyst redox treatment and the support nature were obtained. Catalytic activity and product distribution were shown to be strongly dependent on the support properties, namely acidity and basicity. The gold-zirconia (Au/ZrO2) catalyst pretreated under oxidizing atmosphere was observed to be rather active, resulting in the total conversion of myrtenol and the selectivity to the corresponding amine of about 53%. The reaction kinetics was modelled based on the mechanistic considerations with the catalyst deactivation step incorporated in the mechanism. Carvone hydrogenation over a gold catalyst was studied with the general idea of investigating both the activity of gold catalysts in competitive hydrogenation of different functional groups and developing an approach to the synthesis of valuable carvone derivatives. Gold was found to promote stereo- and chemoselective carvone hydrogenation to dihydrocarvone with a predominant formation of the trans-isomer, which generally is a novel synthetic method for an industrially valuable dihydrocarvone. The solvent effect on the catalytic activity as well as on the ratio between trans- and cis-dihydrocarvone was evaluated.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
With the shift towards many-core computer architectures, dataflow programming has been proposed as one potential solution for producing software that scales to a varying number of processor cores. Programming for parallel architectures is considered difficult as the current popular programming languages are inherently sequential and introducing parallelism is typically up to the programmer. Dataflow, however, is inherently parallel, describing an application as a directed graph, where nodes represent calculations and edges represent a data dependency in form of a queue. These queues are the only allowed communication between the nodes, making the dependencies between the nodes explicit and thereby also the parallelism. Once a node have the su cient inputs available, the node can, independently of any other node, perform calculations, consume inputs, and produce outputs. Data ow models have existed for several decades and have become popular for describing signal processing applications as the graph representation is a very natural representation within this eld. Digital lters are typically described with boxes and arrows also in textbooks. Data ow is also becoming more interesting in other domains, and in principle, any application working on an information stream ts the dataflow paradigm. Such applications are, among others, network protocols, cryptography, and multimedia applications. As an example, the MPEG group standardized a dataflow language called RVC-CAL to be use within reconfigurable video coding. Describing a video coder as a data ow network instead of with conventional programming languages, makes the coder more readable as it describes how the video dataflows through the different coding tools. While dataflow provides an intuitive representation for many applications, it also introduces some new problems that need to be solved in order for data ow to be more widely used. The explicit parallelism of a dataflow program is descriptive and enables an improved utilization of available processing units, however, the independent nodes also implies that some kind of scheduling is required. The need for efficient scheduling becomes even more evident when the number of nodes is larger than the number of processing units and several nodes are running concurrently on one processor core. There exist several data ow models of computation, with different trade-offs between expressiveness and analyzability. These vary from rather restricted but statically schedulable, with minimal scheduling overhead, to dynamic where each ring requires a ring rule to evaluated. The model used in this work, namely RVC-CAL, is a very expressive language, and in the general case it requires dynamic scheduling, however, the strong encapsulation of dataflow nodes enables analysis and the scheduling overhead can be reduced by using quasi-static, or piecewise static, scheduling techniques. The scheduling problem is concerned with nding the few scheduling decisions that must be run-time, while most decisions are pre-calculated. The result is then an, as small as possible, set of static schedules that are dynamically scheduled. To identify these dynamic decisions and to find the concrete schedules, this thesis shows how quasi-static scheduling can be represented as a model checking problem. This involves identifying the relevant information to generate a minimal but complete model to be used for model checking. The model must describe everything that may affect scheduling of the application while omitting everything else in order to avoid state space explosion. This kind of simplification is necessary to make the state space analysis feasible. For the model checker to nd the actual schedules, a set of scheduling strategies are de ned which are able to produce quasi-static schedulers for a wide range of applications. The results of this work show that actor composition with quasi-static scheduling can be used to transform data ow programs to t many different computer architecture with different type and number of cores. This in turn, enables dataflow to provide a more platform independent representation as one application can be fitted to a specific processor architecture without changing the actual program representation. Instead, the program representation is in the context of design space exploration optimized by the development tools to fit the target platform. This work focuses on representing the dataflow scheduling problem as a model checking problem and is implemented as part of a compiler infrastructure. The thesis also presents experimental results as evidence of the usefulness of the approach.
Resumo:
Methyl chloride is an important chemical intermediate with a variety of applications. It is produced today in large units and shipped to the endusers. Most of the derived products are harmless, as silicones, butyl rubber and methyl cellulose. However, methyl chloride is highly toxic and flammable. On-site production in the required quantities is desirable to reduce the risks involved in transportation and storage. Ethyl chloride is a smaller-scale chemical intermediate that is mainly used in the production of cellulose derivatives. Thus, the combination of onsite production of methyl and ethyl chloride is attractive for the cellulose processing industry, e.g. current and future biorefineries. Both alkyl chlorides can be produced by hydrochlorination of the corresponding alcohol, ethanol or methanol. Microreactors are attractive for the on-site production as the reactions are very fast and involve toxic chemicals. In microreactors, the diffusion limitations can be suppressed and the process safety can be improved. The modular setup of microreactors is flexible to adjust the production capacity as needed. Although methyl and ethyl chloride are important chemical intermediates, the literature available on potential catalysts and reaction kinetics is limited. Thus the thesis includes an extensive catalyst screening and characterization, along with kinetic studies and engineering the hydrochlorination process in microreactors. A range of zeolite and alumina based catalysts, neat and impregnated with ZnCl2, were screened for the methanol hydrochlorination. The influence of zinc loading, support, zinc precursor and pH was investigated. The catalysts were characterized with FTIR, TEM, XPS, nitrogen physisorption, XRD and EDX to identify the relationship between the catalyst characteristics and the activity and selectivity in the methyl chloride synthesis. The acidic properties of the catalyst were strongly influenced upon the ZnCl2 modification. In both cases, alumina and zeolite supports, zinc reacted to a certain amount with specific surface sites, which resulted in a decrease of strong and medium Brønsted and Lewis acid sites and the formation of zinc-based weak Lewis acid sites. The latter are highly active and selective in methanol hydrochlorination. Along with the molecular zinc sites, bulk zinc species are present on the support material. Zinc modified zeolite catalysts exhibited the highest activity also at low temperatures (ca 200 °C), however, showing deactivation with time-onstream. Zn/H-ZSM-5 zeolite catalysts had a higher stability than ZnCl2 modified H-Beta and they could be regenerated by burning the coke in air at 400 °C. Neat alumina and zinc modified alumina catalysts were active and selective at 300 °C and higher temperatures. However, zeolite catalysts can be suitable for methyl chloride synthesis at lower temperatures, i.e. 200 °C. Neat γ-alumina was found to be the most stable catalyst when coated in a microreactor channel and it was thus used as the catalyst for systematic kinetic studies in the microreactor. A binder-free and reproducible catalyst coating technique was developed. The uniformity, thickness and stability of the coatings were extensively characterized by SEM, confocal microscopy and EDX analysis. A stable coating could be obtained by thermally pretreating the microreactor platelets and ball milling the alumina to obtain a small particle size. Slurry aging and slow drying improved the coating uniformity. Methyl chloride synthesis from methanol and hydrochloric acid was performed in an alumina-coated microreactor. Conversions from 4% to 83% were achieved in the investigated temperature range of 280-340 °C. This demonstrated that the reaction is fast enough to be successfully performed in a microreactor system. The performance of the microreactor was compared with a tubular fixed bed reactor. The results obtained with both reactors were comparable, but the microreactor allows a rapid catalytic screening with low consumption of chemicals. As a complete conversion of methanol could not be reached in a single microreactor, a second microreactor was coupled in series. A maximum conversion of 97.6 % and a selectivity of 98.8 % were reached at 340°C, which is close to the calculated values at a thermodynamic equilibrium. A kinetic model based on kinetic experiments and thermodynamic calculations was developed. The model was based on a Langmuir Hinshelwood-type mechanism and a plug flow model for the microreactor. The influence of the reactant adsorption on the catalyst surface was investigated by performing transient experiments and comparing different kinetic models. The obtained activation energy for methyl chloride was ca. two fold higher than the previously published, indicating diffusion limitations in the previous studies. A detailed modeling of the diffusion in the porous catalyst layer revealed that severe diffusion limitations occur starting from catalyst coating thicknesses of 50 μm. At a catalyst coating thickness of ca 15 μm as in the microreactor, the conditions of intrinsic kinetics prevail. Ethanol hydrochlorination was performed successfully in the microreactor system. The reaction temperature was 240-340°C. An almost complete conversion of ethanol was achieved at 340°C. The product distribution was broader than for methanol hydrochlorination. Ethylene, diethyl ether and acetaldehyde were detected as by-products, ethylene being the most dominant by-product. A kinetic model including a thorough thermodynamic analysis was developed and the influence of adsorbed HCl on the reaction rate of ethanol dehydration reactions was demonstrated. The separation of methyl chloride using condensers was investigated. The proposed microreactor-condenser concept enables the production of methyl chloride with a high purity of 99%.
Resumo:
One of the main challenges in Software Engineering is to cope with the transition from an industry based on software as a product to software as a service. The field of Software Engineering should provide the necessary methods and tools to develop and deploy new cost-efficient and scalable digital services. In this thesis, we focus on deployment platforms to ensure cost-efficient scalability of multi-tier web applications and on-demand video transcoding service for different types of load conditions. Infrastructure as a Service (IaaS) clouds provide Virtual Machines (VMs) under the pay-per-use business model. Dynamically provisioning VMs on demand allows service providers to cope with fluctuations on the number of service users. However, VM provisioning must be done carefully, because over-provisioning results in an increased operational cost, while underprovisioning leads to a subpar service. Therefore, our main focus in this thesis is on cost-efficient VM provisioning for multi-tier web applications and on-demand video transcoding. Moreover, to prevent provisioned VMs from becoming overloaded, we augment VM provisioning with an admission control mechanism. Similarly, to ensure efficient use of provisioned VMs, web applications on the under-utilized VMs are consolidated periodically. Thus, the main problem that we address is cost-efficient VM provisioning augmented with server consolidation and admission control on the provisioned VMs. We seek solutions for two types of applications: multi-tier web applications that follow the request-response paradigm and on-demand video transcoding that is based on video streams with soft realtime constraints. Our first contribution is a cost-efficient VM provisioning approach for multi-tier web applications. The proposed approach comprises two subapproaches: a reactive VM provisioning approach called ARVUE and a hybrid reactive-proactive VM provisioning approach called Cost-efficient Resource Allocation for Multiple web applications with Proactive scaling. Our second contribution is a prediction-based VM provisioning approach for on-demand video transcoding in the cloud. Moreover, to prevent virtualized servers from becoming overloaded, the proposed VM provisioning approaches are augmented with admission control approaches. Therefore, our third contribution is a session-based admission control approach for multi-tier web applications called adaptive Admission Control for Virtualized Application Servers. Similarly, the fourth contribution in this thesis is a stream-based admission control and scheduling approach for on-demand video transcoding called Stream-Based Admission Control and Scheduling. Our fifth contribution is a computation and storage trade-o strategy for cost-efficient video transcoding in cloud computing. Finally, the sixth and the last contribution is a web application consolidation approach, which uses Ant Colony System to minimize the under-utilization of the virtualized application servers.
Resumo:
Tutkielman tavoitteena on tutkia, miten sähköisen taloushallinnon kehitys on vaikuttanut tilintarkastukseen ja miten se näkyy ammattilehtien kirjoittelussa vuosina 2003-2013. Alatavoitteina tutkitaan, mitä sähköisen taloushallinnon kehityksen tuomia hyötyjä ja haasteita on havaittu tarkastellussa suomalaisessa sekä kansainvälisessä ammattilehtikirjoittelussa tilintarkastuksen näkökulmasta. Kyseessä on laadullinen tutkimus ja tutkimusmetodologiana käytetään sisällönanalyysia. Tietokoneavusteisten tilintarkastuksen tekniikoiden kehityksen seurauksena tekniikoita voidaan kehittää kohti jatkuvaa tilintarkastusta. Kannettavien tietokoneiden ja pilvipalveluiden seurauksena tilintarkastuksesta on tullut enemmän ajasta ja paikasta riippumatonta. XBRL:n avulla tietojen vertailtavuus, luotettavuus ja tarkkuus ovat parantuneet. Haasteina voidaan nähdä tilintarkastajien IT-taitojen kehittämisen tarve sekä asiakkaan ja tilintarkastusyhteisön tietojärjestelmien yhteensopivuus. Hyvätkin ohjelmistot voivat altistaa väärinkäytöksille, jolloin tarvitaan uusia innovatiivisia tekniikoita väärinkäytösten havaitsemiseen. Tutkielman empiirisen osion luotettavuus perustuu ammattilehtien artikkeleiden kirjoittajien näkökulmiin. Tilintarkastusalan kehittyminen tulevaisuudessa on kiinni kehittyvän tekniikan lisäksi asenteista.
Resumo:
Tässä työssä tutkitaan RFID-etätunnistusteknologian avulla saavutettavia merkittävimpiä hyötyjä valmistavan teollisuuden toimitusketjuille. Tavoitteena on kartoittaa saavutettavat hyödyt jo käytössä olevilla RFID-teknologian sovellutuksilla. Työssä esitellään RFID-teknologian perusteet ja käytössä olevat sovellutukset sekä toimitusketjujen yleisimmät riskit ja kustannustekijät. Käytössä olevilla sovellutuksilla saavutettavia hyötyjä verrataan toimitusketjujen yleisimpiin riski- ja kustannustekijöihin. Tutkimuksessa todettiin RFID-teknologialla olevan merkittäviä positiivisia vaikutusmahdollisuuksia toimitusketjujen tehokkaampaan ja taloudellisempaan toimintaan.
Resumo:
Thesis: A liquid-cooled, direct-drive, permanent-magnet, synchronous generator with helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit offers an excellent combination of attributes to reliably provide economic wind power for the coming generation of wind turbines with power ratings between 5 and 20MW. A generator based on the liquid-cooled architecture proposed here will be reliable and cost effective. Its smaller size and mass will reduce build, transport, and installation costs. Summary: Converting wind energy into electricity and transmitting it to an electrical power grid to supply consumers is a relatively new and rapidly developing method of electricity generation. In the most recent decade, the increase in wind energy’s share of overall energy production has been remarkable. Thousands of land-based and offshore wind turbines have been commissioned around the globe, and thousands more are being planned. The technologies have evolved rapidly and are continuing to evolve, and wind turbine sizes and power ratings are continually increasing. Many of the newer wind turbine designs feature drivetrains based on Direct-Drive, Permanent-Magnet, Synchronous Generators (DD-PMSGs). Being low-speed high-torque machines, the diameters of air-cooled DD-PMSGs become very large to generate higher levels of power. The largest direct-drive wind turbine generator in operation today, rated just below 8MW, is 12m in diameter and approximately 220 tonne. To generate higher powers, traditional DD-PMSGs would need to become extraordinarily large. A 15MW air-cooled direct-drive generator would be of colossal size and tremendous mass and no longer economically viable. One alternative to increasing diameter is instead to increase torque density. In a permanent magnet machine, this is best done by increasing the linear current density of the stator windings. However, greater linear current density results in more Joule heating, and the additional heat cannot be removed practically using a traditional air-cooling approach. Direct liquid cooling is more effective, and when applied directly to the stator windings, higher linear current densities can be sustained leading to substantial increases in torque density. The higher torque density, in turn, makes possible significant reductions in DD-PMSG size. Over the past five years, a multidisciplinary team of researchers has applied a holistic approach to explore the application of liquid cooling to permanent-magnet wind turbine generator design. The approach has considered wind energy markets and the economics of wind power, system reliability, electromagnetic behaviors and design, thermal design and performance, mechanical architecture and behaviors, and the performance modeling of installed wind turbines. This dissertation is based on seven publications that chronicle the work. The primary outcomes are the proposal of a novel generator architecture, a multidisciplinary set of analyses to predict the behaviors, and experimentation to demonstrate some of the key principles and validate the analyses. The proposed generator concept is a direct-drive, surface-magnet, synchronous generator with fractional-slot, duplex-helical, double-layer, non-overlapping windings formed from a copper conductor with a coaxial internal coolant conduit to accommodate liquid coolant flow. The novel liquid-cooling architecture is referred to as LC DD-PMSG. The first of the seven publications summarized in this dissertation discusses the technological and economic benefits and limitations of DD-PMSGs as applied to wind energy. The second publication addresses the long-term reliability of the proposed LC DD-PMSG design. Publication 3 examines the machine’s electromagnetic design, and Publication 4 introduces an optimization tool developed to quickly define basic machine parameters. The static and harmonic behaviors of the stator and rotor wheel structures are the subject of Publication 5. And finally, Publications 6 and 7 examine steady-state and transient thermal behaviors. There have been a number of ancillary concrete outcomes associated with the work including the following. X Intellectual Property (IP) for direct liquid cooling of stator windings via an embedded coaxial coolant conduit, IP for a lightweight wheel structure for lowspeed, high-torque electrical machinery, and IP for numerous other details of the LC DD-PMSG design X Analytical demonstrations of the equivalent reliability of the LC DD-PMSG; validated electromagnetic, thermal, structural, and dynamic prediction models; and an analytical demonstration of the superior partial load efficiency and annual energy output of an LC DD-PMSG design X A set of LC DD-PMSG design guidelines and an analytical tool to establish optimal geometries quickly and early on X Proposed 8 MW LC DD-PMSG concepts for both inner and outer rotor configurations Furthermore, three technologies introduced could be relevant across a broader spectrum of applications. 1) The cost optimization methodology developed as part of this work could be further improved to produce a simple tool to establish base geometries for various electromagnetic machine types. 2) The layered sheet-steel element construction technology used for the LC DD-PMSG stator and rotor wheel structures has potential for a wide range of applications. And finally, 3) the direct liquid-cooling technology could be beneficial in higher speed electromotive applications such as vehicular electric drives.