800 resultados para Intelligent environments
Resumo:
It is reported in the literature that distances from the observer are underestimated more in virtual environments (VEs) than in physical world conditions. On the other hand estimation of size in VEs is quite accurate and follows a size-constancy law when rich cues are present. This study investigates how estimation of distance in a CAVETM environment is affected by poor and rich cue conditions, subject experience, and environmental learning when the position of the objects is estimated using an experimental paradigm that exploits size constancy. A group of 18 healthy participants was asked to move a virtual sphere controlled using the wand joystick to the position where they thought a previously-displayed virtual cube (stimulus) had appeared. Real-size physical models of the virtual objects were also presented to the participants as a reference of real physical distance during the trials. An accurate estimation of distance implied that the participants assessed the relative size of sphere and cube correctly. The cube appeared at depths between 0.6 m and 3 m, measured along the depth direction of the CAVE. The task was carried out in two environments: a poor cue one with limited background cues, and a rich cue one with textured background surfaces. It was found that distances were underestimated in both poor and rich cue conditions, with greater underestimation in the poor cue environment. The analysis also indicated that factors such as subject experience and environmental learning were not influential. However, least square fitting of Stevens’ power law indicated a high degree of accuracy during the estimation of object locations. This accuracy was higher than in other studies which were not based on a size-estimation paradigm. Thus as indirect result, this study appears to show that accuracy when estimating egocentric distances may be increased using an experimental method that provides information on the relative size of the objects used.
Resumo:
In collaborative situations, eye gaze is a critical element of behavior which supports and fulfills many activities and roles. In current computer-supported collaboration systems, eye gaze is poorly supported. Even in a state-of-the-art video conferencing system such as the access grid, although one can see the face of the user, much of the communicative power of eye gaze is lost. This article gives an overview of some preliminary work that looks towards integrating eye gaze into an immersive collaborative virtual environment and assessing the impact that this would have on interaction between the users of such a system. Three experiments were conducted to assess the efficacy of eye gaze within immersive virtual environments. In each experiment, subjects observed on a large screen the eye-gaze behavior of an avatar. The eye-gaze behavior of that avatar had previously been recorded from a user with the use of a head-mounted eye tracker. The first experiment was conducted to assess the difference between users' abilities to judge what objects an avatar is looking at with only head gaze being viewed and also with eye- and head-gaze data being displayed. The results from the experiment show that eye gaze is of vital importance to the subjects, correctly identifying what a person is looking at in an immersive virtual environment. The second experiment examined whether a monocular or binocular eye-tracker would be required. This was examined by testing subjects' ability to identify where an avatar was looking from their eye direction alone, or by eye direction combined with convergence. This experiment showed that convergence had a significant impact on the subjects' ability to identify where the avatar was looking. The final experiment looked at the effects of stereo and mono-viewing of the scene, with the subjects being asked to identify where the avatar was looking. This experiment showed that there was no difference in the subjects' ability to detect where the avatar was gazing. This is followed by a description of how the eye-tracking system has been integrated into an immersive collaborative virtual environment and some preliminary results from the use of such a system.
Resumo:
For efficient collaboration between participants, eye gaze is seen as being critical for interaction. Video conferencing either does not attempt to support eye gaze (e.g. AcessGrid) or only approximates it in round table conditions (e.g. life size telepresence). Immersive collaborative virtual environments represent remote participants through avatars that follow their tracked movements. By additionally tracking people's eyes and representing their movement on their avatars, the line of gaze can be faithfully reproduced, as opposed to approximated. This paper presents the results of initial work that tested if the focus of gaze could be more accurately gauged if tracked eye movement was added to that of the head of an avatar observed in an immersive VE. An experiment was conducted to assess the difference between user's abilities to judge what objects an avatar is looking at with only head movements being displayed, while the eyes remained static, and with eye gaze and head movement information being displayed. The results from the experiment show that eye gaze is of vital importance to the subjects correctly identifying what a person is looking at in an immersive virtual environment. This is followed by a description of the work that is now being undertaken following the positive results from the experiment. We discuss the integration of an eye tracker more suitable for immersive mobile use and the software and techniques that were developed to integrate the user's real-world eye movements into calibrated eye gaze in an immersive virtual world. This is to be used in the creation of an immersive collaborative virtual environment supporting eye gaze and its ongoing experiments. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The work reported in this paper is motivated by the fact that there is a need to apply autonomic computing concepts to parallel computing systems. Advancing on prior work based on intelligent cores [36], a swarm-array computing approach, this paper focuses on ‘Intelligent agents’ another swarm-array computing approach in which the task to be executed on a parallel computing core is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and is seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-ware objectives of autonomic computing. The feasibility of the proposed swarm-array computing approach is validated on a multi-agent simulator.
Resumo:
The work reported in this paper proposes ‘Intelligent Agents’, a Swarm-Array computing approach focused to apply autonomic computing concepts to parallel computing systems and build reliable systems for space applications. Swarm-array computing is a robotics a swarm robotics inspired novel computing approach considered as a path to achieve autonomy in parallel computing systems. In the intelligent agent approach, a task to be executed on parallel computing cores is considered as a swarm of autonomous agents. A task is carried to a computing core by carrier agents and can be seamlessly transferred between cores in the event of a predicted failure, thereby achieving self-* objectives of autonomic computing. The approach is validated on a multi-agent simulator.
Resumo:
This paper describes the design, implementation and testing of an intelligent knowledge-based supervisory control (IKBSC) system for a hot rolling mill process. A novel architecture is used to integrate an expert system with an existing supervisory control system and a new optimization methodology for scheduling the soaking pits in which the material is heated prior to rolling. The resulting IKBSC system was applied to an aluminium hot rolling mill process to improve the shape quality of low-gauge plate and to optimise the use of the soaking pits to reduce energy consumption. The results from the trials demonstrate the advantages to be gained from the IKBSC system that integrates knowledge contained within data, plant and human resources with existing model-based systems. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we are mainly concerned with the development of efficient computer models capable of accurately predicting the propagation of low-to-middle frequency sound in the sea, in axially symmetric (2D) and in fully 3D environments. The major physical features of the problem, i.e. a variable bottom topography, elastic properties of the subbottom structure, volume attenuation and other range inhomogeneities are efficiently treated. The computer models presented are based on normal mode solutions of the Helmholtz equation on the one hand, and on various types of numerical schemes for parabolic approximations of the Helmholtz equation on the other. A new coupled mode code is introduced to model sound propagation in range-dependent ocean environments with variable bottom topography, where the effects of an elastic bottom, of volume attenuation, surface and bottom roughness are taken into account. New computer models based on finite difference and finite element techniques for the numerical solution of parabolic approximations are also presented. They include an efficient modeling of the bottom influence via impedance boundary conditions, they cover wide angle propagation, elastic bottom effects, variable bottom topography and reverberation effects. All the models are validated on several benchmark problems and versus experimental data. Results thus obtained were compared with analogous results from standard codes in the literature.