947 resultados para Intelligent Signal Processing
Resumo:
The main purpose of this paper is to investigate theoretically and experimentally the use of family of Polynomial Powers of the Sigmoid (PPS) Function Networks applied in speech signal representation and function approximation. This paper carries out practical investigations in terms of approximation fitness (LSE), time consuming (CPU Time), computational complexity (FLOP) and representation power (Number of Activation Function) for different PPS activation functions. We expected that different activation functions can provide performance variations and further investigations will guide us towards a class of mappings associating the best activation function to solve a class of problems under certain criteria.
Resumo:
The estimation of the number of people in an area under surveillance is very important for the problem of crowd monitoring. When an area reaches an occupation level greater than the projected one, people's safety can be in danger. This paper describes a new technique for crowd density estimation based on Minkowski fractal dimension. Fractal dimension has been widely used to characterize data texture in a large number of physical and biological sciences. The results of our experiments show that fractal dimension can also be used to characterize levels of people congestion in images of crowds. The proposed technique is compared with a statistical and a spectral technique, in a test study of nearly 300 images of a specific area of the Liverpool Street Railway Station, London, UK. Results obtained in this test study are presented.
Resumo:
The iterative quadratic maximum likelihood IQML and the method of direction estimation MODE are well known high resolution direction-of-arrival DOA estimation methods. Their solutions lead to an optimization problem with constraints. The usual linear constraint presents a poor performance for certain DOA values. This work proposes a new linear constraint applicable to both DOA methods and compare their performance with two others: unit norm and usual linear constraint. It is shown that the proposed alternative performs better than others constraints. The resulting computational complexity is also investigated.
Resumo:
An artificial neural network (ANN) approach is proposed for the detection of workpiece `burn', the undesirable change in metallurgical properties of the material produced by overly aggressive or otherwise inappropriate grinding. The grinding acoustic emission (AE) signals for 52100 bearing steel were collected and digested to extract feature vectors that appear to be suitable for ANN processing. Two feature vectors are represented: one concerning band power, kurtosis and skew; and the other autoregressive (AR) coefficients. The result (burn or no-burn) of the signals was identified on the basis of hardness and profile tests after grinding. The trained neural network works remarkably well for burn detection. Other signal-processing approaches are also discussed, and among them the constant false-alarm rate (CFAR) power law and the mean-value deviance (MVD) prove useful.
Resumo:
Electromyographic activity of the trapezius muscle and serratus anterior muscle was analysed in 24 male volunteers using a 2-channel TECA TE 4 electromyograp, during the execution of four different modalities of military press exercises with middle grip. The trapezius acted preferentially in the modalities standing press behind neck; and sitting forward and press behind neck, while SI did not show any significative difference among the modalities. The high levels of action potentials with which TS and SI acted justify the inclusion of these exercises in physical programmes.
Resumo:
We analyze the potential of the next generation of e+e- linear colliders to search for large extra dimensions via the production of fermion pairs in association with Kaluza-Klein gravitons (G), i.e., e+e- →ff̃G. This process leads to a final state exhibiting a significant amount of missing energy in addition to acoplanar lepton or jet pairs. We study in detail this reaction using the full tree level contributions due to the graviton emission and the standard model backgrounds. After choosing the cuts to enhance the signal, we show that a linear collider with a center-of-mass energy of 500 GeV will be able to probe quantum gravity scales from 0.96 (0.86) up to 4.1 (3.3) TeV at a 2 (5)σ level, depending on the number of extra dimensions. ©2001 The American Physical Society.
Resumo:
In this work it is introduced a new approach to calculate the density of liquids in terms of the energies of the acoustic signals. This method is compared to other methods in the time domain (peak-to-peak amplitudes) and frequency domain magnitudes at a single frequency. It is used a measurement cell based on a multiple reflection technique, and it is developed an acoustic model for the cell. Simulations and experiments using several liquids are presented, showing that the energy method a less sensitive to noise than the other techniques. The relative errors in the density are smaller than 0.2% when compared to the values measured with a pycnometer.
Resumo:
The double pulley equipment was tested on ten male volunteers during contraction of the semitendinosus and biceps femoris (caput longum) muscles in the following movements of the lower limbs: 1) hip extension with extended knee and erect trunk, 2) hip extension with flexed knee and erect trunk, 3) hip extension with flexed knee and erect trunk, 3) hip extension with extended knee and inclined trunk, 5) hip abduction along the midline, 7) hip abduction with extension beyond the midline, 8) adduction with hip flexion beyond the midline, 8) adduction with hip flexion beyond the midline, and 9) adduction with hip extension beyond the midline. The myoelectric signals were taken up by Lec Tec surface electrodes connected to a 6-channel Lynx electromyographic signal amplifier coupled with a computer equipped with a model CAD 10/26 analogue digital conversion board and with a specific software for signal recording and analysis. The semitendinosus and biceps femoris muscles presented the highest potentials in movements 1; 2; 7, 8 and 9, whereas the potentials in the remaining movements were negligible. The pattern of activity of the semitendinosus and the biceps femoris was similar in exercises 1, 2, 3, 4 and 8. The potentials of the semitendinosus prevailed in movements 5, 6 and 7, and the strongest potentials observed in movement 9 were those of the biceps femoris.
Resumo:
The effective activity of the pectoralis major and deltoideus anterior muscles in horizontal flyer exercises with external loads of 25, 50, 75 and 100% of the maximum load was studied in 11 male volunteers. The electromyographic analysis was done by using MEDI-TRACE-200 surface electrodes connected to a biological signal acquisition mode coupled to a PC/AT computer. The electromyographic signals were processed and the values obtained were normalized through maximum voluntary isometric contraction. It was statistically observed that in all types and loads of this exercise, the muscles presented significant differences in the concentric and eccentric phases. In the concentric phase, when different loads were compared, the muscles were more active with 75 and 100% of the maximum load, while in the eccentric phase, higher activity was observed with 100% of the maximum load. By analyzing each load effect in the concentric phase, it was verified that the muscles on the left side were more active than those on the right side with 25, 75 and 100% of the maximum load.
Resumo:
This paper describes a high senstivity low cost capacitive strain gage sensor. The theory, design, and sensor construction details are presented. It consists of eight capacitive sensors connected in two full bridges. The capacitive strain gage sensor structure was designed in order to produce high sensitivity and low dependence with temperature. By using a simple signal conditioning circuit constituted by a differential amplifier, a band-pass filter, and a precision rectifier the device can measure forces with resolution of 0.009 N and precision of 98.7%. It is rugged, presents linear response, and good repeatability. It presents sensitivity of 8.7 V/N and fall time of 12 ms.
Resumo:
This work deals with the effects of the series compensation on the electric power system for small-signal stability studies. Therefore, the system is modeled admitting the existence of the compensation and then, the equations are linearized and a linear model is obtained for a single machine-infinite bus power system with a compensator installed. The resulting model with nine defined constants is very similar to the Heffron & Phillips linear model widely used on the existent literature. Finally, simulations are executed for an example system, to analyze the behavior of these constants when loading the system. © 2004 IEEE.
Resumo:
In this work a new method is proposed of separated estimation for the ARMA spectral model based on the modified Yule-Walker equations and on the least squares method. The proposal of the new method consists of performing an AR filtering in the random process generated obtaining a new random estimate, which will reestimate the ARMA model parameters, given a better spectrum estimate. Some numerical examples will be presented in order to ilustrate the performance of the method proposed, which is evaluated by the relative error and the average variation coefficient.
Resumo:
This paper discusses the utilization of Virtual Instrumentation to the implementation and evaluation of different power definitions, so that classical formulations and new definitions can be compared without the necessity of acquiring different power meters or analyzers. Accordingly, the definitions of IEEE Standard 1459-2000 for the measurement of power quantities under distorted and unbalanced situations, have been digitally implemented. Thus, several power and power factor components related to the decomposition of the measured voltage and current signals have been obtained. The proposed PC-based Virtual Instrument uses a high performance acquisition board and isolated sensors and transducers. All digital algorithms and routines have been implemented by means of a graphical development system. Regarding to the implementation of STD 1459, this paper also proposes several different algorithms to the required decompositions of voltage, current and power components. © 2005 IEEE.
Resumo:
This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding processes. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045 Steel as work material. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system working at 2.5 MHz was used to collect the raw acoustic emission instead of the root mean square value usually employed. Many statistical analyses have shown to be effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm rate (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS. Copyright © 2006 by ABCM.
Resumo:
Due to a shortage of textbooks with specific data on muscular activity concerning physical conditioning and sports, we analysed electromyographically the muscles pectoralis major and deltoideus anterior, bilaterally, in inclined flying exercises, during the concentric and eccentric phases, with external loads of 25, 50, 75 and 100% of the maximum load. The electromyographic analysis was performed in eleven male volunteers with MEDITRACE-200 surface electrodes connected to a six-channel biologic signal acquisition module coupled to a PC/AT computer. The electromyographic signals were processed and the obtained effective values were normalized through maximum voluntary isometric contraction. Statistically, the results showed that all the muscles studied presented significant differences between the concentric and the eccentric phases, with higher electromyographic activity during the concentric phase. By analysing the different loads for each muscle in both phases, significant electromyographic activity was observed for all muscles. When the effect of each load on each muscle during the concentric phase was analysed, it was noticed that the muscles on the left were more active than those on the right side, while in the eccentric phase the muscles had different behavior.