911 resultados para Integrity constraints
Resumo:
Ms. Kotzeva's team aimed to reveal the formation of the new gender identities in the transitional society of Bulgaria since 1989. Their main conclusions (presented in a series of manuscripts written in Bulgarian and German, and also on disc) were reached on the basis of data obtained from a field survey involving a group of 190 women, and interviews conducted with a group of Bulgarian women politicians. Although approving of gender equality and the ideology of emancipation on an abstract level, women predominantly identify themselves with mothering and caring for the family. At the same time they do not fully surrender to their family obligations and support a strategy of balancing between family and extra-family activities. Bulgarian women are highly frustrated by the new requirements of the labour market, insecurity, and lack of safety in their personal life. Ms. Kotzeva and her team observed a high degree of convergence of self-identification strategies amongst Bulgarian women from different generations and educational backgrounds. On the other hand, women from the ethnic minorities, especially Gypsy women, demonstrate radically divergent styles of orientation and behaviour. Women's marginalisation due to the altering economic and political circumstances in Bulgaria, and the decline of female participation in Parliament, have clearly shown that the end of socialist women's politics must lead to critical reflection and the development of new strategies in order to enable women to take part in the process of a new elite in Bulgaria.
Resumo:
Polyetheretherketone (PEEK) is a novel polymer with potential advantages for its use in demanding orthopaedic applications (e.g. intervertebral cages). However, the influence of a physiological environment on the mechanical stability of PEEK has not been reported. Furthermore, the suitability of the polymer for use in highly stressed spinal implants such as intervertebral cages has not been investigated. Therefore, a combined experimental and analytical study was performed to address these open questions. A quasi-static mechanical compression test was performed to compare the initial mechanical properties of PEEK-OPTIMA polymer in a dry, room-temperature and in an aqueous, 37 degrees C environment (n=10 per group). The creep behaviour of cylindrical PEEK polymer specimens (n=6) was measured in a simulated physiological environment at an applied stress level of 10 MPa for a loading duration of 2000 hours (12 weeks). To compare the biomechanical performance of different intervertebral cage types made from PEEK and titanium under complex loading conditions, a three-dimensional finite element model of a functional spinal unit was created. The elastic modulus of PEEK polymer specimens in a physiological environment was 1.8% lower than that of specimens tested at dry, room temperature conditions (P<0.001). The results from the creep test showed an average creep strain of less than 0.1% after 2000 hours of loading. The finite element analysis demonstrated high strain and stress concentrations at the bone/implant interface, emphasizing the importance of cage geometry for load distribution. The stress and strain maxima in the implants were well below the material strength limits of PEEK. In summary, the experimental results verified the mechanical stability of the PEEK-OPTIMA polymer in a simulated physiological environment, and over extended loading periods. Finite element analysis supported the use of PEEK-OPTIMA for load-bearing intervertebral implants.
Resumo:
Upon the incidence of DNA stress, the ataxia telangiectasia-mutated (ATM) and Rad3-related (ATR) signaling kinases activate a transient cell cycle arrest that allows cells to repair DNA before proceeding into mitosis. Although the ATM-ATR pathway is highly conserved over species, the mechanisms by which plant cells stop their cell cycle in response to the loss of genome integrity are unclear. We demonstrate that the cell cycle regulatory WEE1 kinase gene of Arabidopsis thaliana is transcriptionally activated upon the cessation of DNA replication or DNA damage in an ATR- or ATM-dependent manner, respectively. In accordance with a role for WEE1 in DNA stress signaling, WEE1-deficient plants showed no obvious cell division or endoreduplication phenotype when grown under nonstress conditions but were hypersensitive to agents that impair DNA replication. Induced WEE1 expression inhibited plant growth by arresting dividing cells in the G2-phase of the cell cycle. We conclude that the plant WEE1 gene is not rate-limiting for cycle progression under normal growth conditions but is a critical target of the ATR-ATM signaling cascades that inhibit the cell cycle upon activation of the DNA integrity checkpoints, coupling mitosis to DNA repair in cells that suffer DNA damage.