938 resultados para Integer programming, Constraint programming, Sugarcane rail, Job shop
Resumo:
High altitude constitutes an exciting natural laboratory for medical research. While initially, the aim of high-altitude research was to understand the adaptation of the organism to hypoxia and find treatments for altitude-related diseases, over the past decade or so, the scope of this research has broadened considerably. Two important observations led to the foundation for the broadening of the scientific scope of high-altitude research. First, high-altitude pulmonary edema (HAPE) represents a unique model which allows studying fundamental mechanisms of pulmonary hypertension and lung edema in humans. Secondly, the ambient hypoxia associated with high-altitude exposure facilitates the detection of pulmonary and systemic vascular dysfunction at an early stage. Here, we review studies that, by capitalizing on these observations, have led to the description of novel mechanisms underpinning lung edema and pulmonary hypertension and to the first direct demonstration of fetal programming of vascular dysfunction in humans.
Resumo:
The United States¿ Federal and State laws differentiate between acceptable (or, legal) and unacceptable (illegal) behavior by prescribing restrictive punishment to citizens and/or groups that violate these established rules. These regulations are written to treat every person equally and to fairly serve justice; furthermore, the sanctions placed on offenders seek to reform illegal behavior through limitations on freedoms and rehabilitative programs. Despite the effort to treat all offenders fairly regardless of social identity categories (e.g., sex, race, ethnicity, socioeconomic status, age, ability, and gender and sexual orientation) and to humanely eliminate illegal behavior, the American penal system perpetuates de facto discrimination against a multitude of peoples. Furthermore, soaring recidivism rates caused by unsuccessful re-entry of incarcerated offenders puts economic stress on Federal and State budgets. For these reasons, offenders, policy-makers, and law-abiding citizens should all have a vested interest in reforming the prison system. This thesis focuses on the failure of the United States corrections system to adequately address the gender-specific needs of non-violent female offenders. Several factors contribute to the gender-specific discrimination that women experience in the criminal justice system: 1) Trends in female criminality that skew women¿s crime towards drug-related crimes, prostitution, and property offenses; 2) Mandatory minimum sentences for drug crimes that are disproportionate to the crime committed; 3) So-called ¿gender-neutral¿ educational, vocational, substance abuse, and mental health programming that intends to equally rehabilitate men and women, but in fact favors men; and 4) The isolating nature of prison structures that inhibits smooth re-entry into society. I argue that a shift in the placement and treatment of non-violent female offenders is necessary for effective rehabilitation and for reducing recidivism rates. The first component of this shift is the design and implementation of gender- responsive treatment (GRT) rather than gender-neutral approaches in rehabilitative programming. The second shift is the utilization of alternatives to incarceration, which provide both more humane treatment of offenders and smoother reintegration to society. Drawing on recent scholarship, information from prison advocacy organizations, and research with men in an alternative program, I provide a critical analysis of current policies and alternative programs, and suggest several proposals for future gender- responsive programs in prisons and in place of incarceration. I argue that the expansion of gender-responsive programming and alternatives to incarceration respond to the marginalization of female offenders, address concerns about the financial sustainability of the United States criminal justice system, and tackle high recidivism rates.
DESIGN AND IMPLEMENT DYNAMIC PROGRAMMING BASED DISCRETE POWER LEVEL SMART HOME SCHEDULING USING FPGA
Resumo:
With the development and capabilities of the Smart Home system, people today are entering an era in which household appliances are no longer just controlled by people, but also operated by a Smart System. This results in a more efficient, convenient, comfortable, and environmentally friendly living environment. A critical part of the Smart Home system is Home Automation, which means that there is a Micro-Controller Unit (MCU) to control all the household appliances and schedule their operating times. This reduces electricity bills by shifting amounts of power consumption from the on-peak hour consumption to the off-peak hour consumption, in terms of different “hour price”. In this paper, we propose an algorithm for scheduling multi-user power consumption and implement it on an FPGA board, using it as the MCU. This algorithm for discrete power level tasks scheduling is based on dynamic programming, which could find a scheduling solution close to the optimal one. We chose FPGA as our system’s controller because FPGA has low complexity, parallel processing capability, a large amount of I/O interface for further development and is programmable on both software and hardware. In conclusion, it costs little time running on FPGA board and the solution obtained is good enough for the consumers.
Resumo:
Context-dependent behavior is becoming increasingly important for a wide range of application domains, from pervasive computing to common business applications. Unfortunately, mainstream programming languages do not provide mechanisms that enable software entities to adapt their behavior dynamically to the current execution context. This leads developers to adopt convoluted designs to achieve the necessary runtime flexibility. We propose a new programming technique called Context-oriented Programming (COP) which addresses this problem. COP treats context explicitly, and provides mechanisms to dynamically adapt behavior in reaction to changes in context, even after system deployment at runtime. In this paper we lay the foundations of COP, show how dynamic layer activation enables multi-dimensional dispatch, illustrate the application of COP by examples in several language extensions, and demonstrate that COP is largely independent of other commitments to programming style.
Resumo:
This paper treats the problem of setting the inventory level and optimizing the buffer allocation of closed-loop flow lines operating under the constant-work-in-process (CONWIP) protocol. We solve a very large but simple linear program that models an entire simulation run of a closed-loop flow line in discrete time to determine a production rate estimate of the system. This approach introduced in Helber, Schimmelpfeng, Stolletz, and Lagershausen (2011) for open flow lines with limited buffer capacities is extended to closed-loop CONWIP flow lines. Via this method, both the CONWIP level and the buffer allocation can be optimized simultaneously. The first part of a numerical study deals with the accuracy of the method. In the second part, we focus on the relationship between the CONWIP inventory level and the short-term profit. The accuracy of the method turns out to be best for such configurations that maximize production rate and/or short-term profit.
Resumo:
Master production schedule (MPS) plays an important role in an integrated production planning system. It converts the strategic planning defined in a production plan into the tactical operation execution. The MPS is also known as a tool for top management to control over manufacture resources and becomes input of the downstream planning levels such as material requirement planning (MRP) and capacity requirement planning (CRP). Hence, inappropriate decision on the MPS development may lead to infeasible execution, which ultimately causes poor delivery performance. One must ensure that the proposed MPS is valid and realistic for implementation before it is released to real manufacturing system. In practice, where production environment is stochastic in nature, the development of MPS is no longer simple task. The varying processing time, random event such as machine failure is just some of the underlying causes of uncertainty that may be hardly addressed at planning stage so that in the end the valid and realistic MPS is tough to be realized. The MPS creation problem becomes even more sophisticated as decision makers try to consider multi-objectives; minimizing inventory, maximizing customer satisfaction, and maximizing resource utilization. This study attempts to propose a methodology for MPS creation which is able to deal with those obstacles. This approach takes into account uncertainty and makes trade off among conflicting multi-objectives at the same time. It incorporates fuzzy multi-objective linear programming (FMOLP) and discrete event simulation (DES) for MPS development.
Resumo:
Opaque products enable service providers to hide specific characteristics of their service fulfillment from the customer until after purchase. Prominent examples include internet-based service providers selling airline tickets without defining details, such as departure time or operating airline, until the booking has been made. Owing to the resulting flexibility in resource utilization, the traditional revenue management process needs to be modified. In this paper, we extend dynamic programming decomposition techniques widely used for traditional revenue management to develop an intuitive capacity control approach that allows for the incorporation of opaque products. In a simulation study, we show that the developed approach significantly outperforms other well-known capacity control approaches adapted to the opaque product setting. Based on the approach, we also provide computational examples of how the share of opaque products as well as the degree of opacity can influence the results.
Resumo:
Unterstützungssysteme für die Programmierausbildung sind weit verbreitet, doch gängige Standards für den Austausch von allgemeinen (Lern-) Inhalten und Tests erfüllen nicht die speziellen Anforderungen von Programmieraufgaben wie z. B. den Umgang mit komplexen Einreichungen aus mehreren Dateien oder die Kombination verschiedener (automatischer) Bewertungsverfahren. Dadurch können Aufgaben nicht zwischen Systemen ausgetauscht werden, was aufgrund des hohen Aufwands für die Entwicklung guter Aufgaben jedoch wünschenswert wäre. In diesem Beitrag wird ein erweiterbares XML-basiertes Format zum Austausch von Programmieraufgaben vorgestellt, das bereits von mehreren Systemen prototypisch genutzt wird. Die Spezifikation des Austauschformats ist online verfügbar [PFMA].
Resumo:
Insults during the fetal period predispose the offspring to systemic cardiovascular disease, but little is known about the pulmonary circulation and the underlying mechanisms. Maternal undernutrition during pregnancy may represent a model to investigate underlying mechanisms, because it is associated with systemic vascular dysfunction in the offspring in animals and humans. In rats, restrictive diet during pregnancy (RDP) increases oxidative stress in the placenta. Oxygen species are known to induce epigenetic alterations and may cross the placental barrier. We hypothesized that RDP in mice induces pulmonary vascular dysfunction in the offspring that is related to an epigenetic mechanism. To test this hypothesis, we assessed pulmonary vascular function and lung DNA methylation in offspring of RDP and in control mice at the end of a 2-wk exposure to hypoxia. We found that endothelium-dependent pulmonary artery vasodilation in vitro was impaired and hypoxia-induced pulmonary hypertension and right ventricular hypertrophy in vivo were exaggerated in offspring of RDP. This pulmonary vascular dysfunction was associated with altered lung DNA methylation. Administration of the histone deacetylase inhibitors butyrate and trichostatin A to offspring of RDP normalized pulmonary DNA methylation and vascular function. Finally, administration of the nitroxide Tempol to the mother during RDP prevented vascular dysfunction and dysmethylation in the offspring. These findings demonstrate that in mice undernutrition during gestation induces pulmonary vascular dysfunction in the offspring by an epigenetic mechanism. A similar mechanism may be involved in the fetal programming of vascular dysfunction in humans.
Resumo:
A patient classification system was developed integrating a patient acuity instrument with a computerized nursing distribution method based on a linear programming model. The system was designed for real-time measurement of patient acuity (workload) and allocation of nursing personnel to optimize the utilization of resources.^ The acuity instrument was a prototype tool with eight categories of patients defined by patient severity and nursing intensity parameters. From this tool, the demand for nursing care was defined in patient points with one point equal to one hour of RN time. Validity and reliability of the instrument was determined as follows: (1) Content validity by a panel of expert nurses; (2) predictive validity through a paired t-test analysis of preshift and postshift categorization of patients; (3) initial reliability by a one month pilot of the instrument in a practice setting; and (4) interrater reliability by the Kappa statistic.^ The nursing distribution system was a linear programming model using a branch and bound technique for obtaining integer solutions. The objective function was to minimize the total number of nursing personnel used by optimally assigning the staff to meet the acuity needs of the units. A penalty weight was used as a coefficient of the objective function variables to define priorities for allocation of staff.^ The demand constraints were requirements to meet the total acuity points needed for each unit and to have a minimum number of RNs on each unit. Supply constraints were: (1) total availability of each type of staff and the value of that staff member (value was determined relative to that type of staff's ability to perform the job function of an RN (i.e., value for eight hours RN = 8 points, LVN = 6 points); (2) number of personnel available for floating between units.^ The capability of the model to assign staff quantitatively and qualitatively equal to the manual method was established by a thirty day comparison. Sensitivity testing demonstrated appropriate adjustment of the optimal solution to changes in penalty coefficients in the objective function and to acuity totals in the demand constraints.^ Further investigation of the model documented: correct adjustment of assignments in response to staff value changes; and cost minimization by an addition of a dollar coefficient to the objective function. ^
Resumo:
Index tracking has become one of the most common strategies in asset management. The index-tracking problem consists of constructing a portfolio that replicates the future performance of an index by including only a subset of the index constituents in the portfolio. Finding the most representative subset is challenging when the number of stocks in the index is large. We introduce a new three-stage approach that at first identifies promising subsets by employing data-mining techniques, then determines the stock weights in the subsets using mixed-binary linear programming, and finally evaluates the subsets based on cross validation. The best subset is returned as the tracking portfolio. Our approach outperforms state-of-the-art methods in terms of out-of-sample performance and running times.