968 resultados para Inflammatory activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypoxia is a prominent feature of chronically inflamed tissues. Oxygen-sensing hydroxylases control transcriptional adaptation to hypoxia through the regulation of hypoxia-inducible factor (HIF) and nuclear factor ?B (NF-?B), both of which can regulate the inflammatory response. Furthermore, pharmacologic hydroxylase inhibitors reduce inflammation in multiple animal models. However, the underlying mechanism(s) linking hydroxylase activity to inflammatory signaling remains unclear. IL-1ß, a major proinflammatory cytokine that regulates NF-?B, is associated with multiple inflammatory pathologies. We demonstrate that a combination of prolyl hydroxylase 1 and factor inhibiting HIF hydroxylase isoforms regulates IL-1ß-induced NF-?B at the level of (or downstream of) the tumor necrosis factor receptor-associated factor 6 complex. Multiple proteins of the distal IL-1ß-signaling pathway are subject to hydroxylation and form complexes with either prolyl hydroxylase 1 or factor inhibiting HIF. Thus, we hypothesize that hydroxylases regulate IL-1ß signaling and subsequent inflammatory gene expression. Furthermore, hydroxylase inhibition represents a unique approach to the inhibition of IL-1ß-dependent inflammatory signaling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Alcohol consumption is inversely correlated with the incidence of cardiovascular disease. It is thought that red wine is specifically responsible for these cardiovascular benefits, due to its ability to reduce vascular inflammation, facilitate vasorelaxation, and inhibit angiogenesis. This is because of its high polyphenolic content. Resveratrol is the main biologically active polyphenol within red wine. Owing to its vascular-enhancing properties, resveratrol may be effective in the microcirculation of the eye, thereby helping prevent ocular diseases such as age-related macular degeneration, diabetic retinopathy, and glaucoma. Such conditions are accountable for worldwide prevalence of visual loss. Method: A review of the relevant literature was conducted on the ScienceDirect, Web of Science, and PubMed databases. Key words used to carry out the searches included 'red wine', 'polyphenols', 'resveratrol', 'eye' and 'ocular'. Articles relating to the effects of resveratrol on the eye were reviewed. Results: The protective effects of resveratrol within the eye are extensive. It has been demonstrated to have anti-oxidant, anti-apoptotic, anti-tumourogenic, anti-inflammatory, anti-angiogenic and vasorelaxant properties. There are potential benefits of resveratrol supplementation across a wide range of ocular diseases. The molecular mechanisms underlying these protective actions are diverse. Conclusion: Evidence suggests that resveratrol may have potential in the treatment of several ocular diseases. However, while there are many studies indicating plausible biological mechanisms using animal models and in-vitro retinal cells there is a paucity of human research. The evidence base for the use of resveratrol in the management of ocular diseases needs to be increased before recommendations can be made for the use of resveratrol as an ocular supplement. © 2014 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substantial evidence indicates that aspirin and related non-steroidal anti-inflammatory drugs (NSAIDs) have potential as chemopreventative/therapeutic agents. However, these agents cannot be universally recommended for prevention purposes due to their potential side-effect profiles. Here, we compared the growth inhibitory and mechanistic activity of aspirin to two novel analogues, diaspirin (DiA) and fumaryl diaspirin (F-DiA). We found that the aspirin analogues inhibited cell proliferation and induced apoptosis of colorectal cancer cells at significantly lower doses than aspirin. Similar to aspirin, we found that an early response to the analogues was a reduction in levels of cyclin D1 and stimulation of the NF-κB pathway. This stimulation was associated with a significant reduction in basal levels of NF-κB transcriptional activity, in keeping with previous data for aspirin. However, in contrast to aspirin, DiA and F-DiA activity was not associated with nucleolar accumulation of RelA. For all assays, F-DiA had a more rapid and significant effect than DiA, identifying this agent as particularly active against colorectal cancer. Using a syngeneic colorectal tumour model in mice, we found that, while both agents significantly inhibited tumour growth in vivo, this effect was particularly pronounced for F-DiA. These data identify two compounds that are active against colorectal cancer in vitro and in vivo. They also identify a potential mechanism of action of these agents and shed light on the chemical structures that may be important for the antitumour effects of aspirin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in gastrointestinal cancer cell lines. Similar actions on normal gastric epithelial cells could contribute to NSAID gastropathy. The present work therefore compared the actions of diclofenac, ibuprofen, indomethacin, and the cyclo-oxygenase-2 selective inhibitor, NS-398, on a primary culture of guinea-pig gastric mucous epithelial cells. Cell number was assessed by staining with crystal violet. Apoptotic activity was determined by condensation and fragmentation of nuclei and by assay of caspase-3-like activity. Necrosis was evaluated from release of cellular enzymes. Ibuprofen (250 μM for 24 h) promoted cell loss, and apoptosis, under both basal conditions and when apoptosis was increased by 25 μM N-Hexanoyl-D-sphingosine (C6-ceramide). Diclofenac (250 μM for 24 h) reduced the proportion of apoptotic nuclei from 5.2 to 2.1%, and caused inhibition of caspase-3-like activity, without causing necrosis under basal conditions. No such reduction in apoptotic activity was evident in the presence of 25 μM C6-ceramide. The inhibitory effect of diclofenac on basal caspase-3-like activity was also exhibited by the structurally similar mefenamic and flufenamic acids (1–250 μM), but not by niflumic acid. Inhibition of superoxide production by the cells increased caspase-3-like activity, but the inhibitory action of diclofenac on caspase activity remained. Diclofenac did not affect superoxide production. Diclofenac inhibited caspase-3-like activity in cell homogenates and also inhibited human recombinant caspase-3. In conclusion, NSAIDs vary in their effect on apoptotic activity in a primary culture of guinea-pig gastric mucous epithelial cells, and the inhibitory effect of diclofenac on basal apoptosis could involve an action on caspase activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many factors can be, and have been, attributed to the appearance of complications in lens wear, but the greatest is associated with deposition. Reduced acuity, irritation and inflammatory responses are often referred to as adverse reactions arising as a result of deposition. In this study, particular attention was paid to the potential role of adsorbed proteins in activating, mediating and/or stimulating a host immune response, i.e., the hypothesis that the adsorption of certain proteins from the tears and ocular surfaces may actively affect successful lens wear. In particular, the purpose of this study was to investigate the presence of a group of proteins previously undiscovered in the ocular environment. The intention was to target a family of proteins/glycoproteins that have become prominent recently in a variety of inflammatory responses and disorders at many other mucosal associated sites around the body, e.g. in nasal rhinitis and in joint inflammation. The protein cascade in question is the kinin family of inflammatory mediators. The aim was to investigate their presence in the ocular environment, specifically in relation to contact lens wear, and consequently assess the implications of their discovery. High molecular weight kininogen (HMWK), with its central role in kinin responses, was investigated initially as the marker of kinin activity, with subsequent members examined thereafter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differences in lipid metabolism associate with age-related disease development and lifespan. Inflammation is a common link between metabolic dysregulation and aging. Saturated fatty acids (FAs) initiate pro-inflammatory signalling from many cells including monocytes; however, no existing studies have quantified age-associated changes in individual FAs in relation to inflammatory phenotype. Therefore, we have determined the plasma concentrations of distinct FAs by gas chromatography in 26 healthy younger individuals (age < 30 years) and 21 healthy FA individuals (age > 50 years). Linear mixed models were used to explore the association between circulating FAs, age and cytokines. We showed that plasma saturated, poly- and mono-unsaturated FAs increase with age. Circulating TNF-α and IL-6 concentrations increased with age, whereas IL-10 and TGF-β1 concentrations decreased. Oxidation of MitoSOX Red was higher in leucocytes from FA adults, and plasma oxidized glutathione concentrations were higher. There was significant colinearity between plasma saturated FAs, indicative of their metabolic relationships. Higher levels of the saturated FAs C18:0 and C24:0 were associated with lower TGF-β1 concentrations, and higher C16:0 were associated with higher TNF-α concentrations. We further examined effects of the aging FA profile on monocyte polarization and metabolism in THP1 monocytes. Monocytes preincubated with C16:0 increased secretion of pro-inflammatory cytokines in response to phorbol myristate acetate-induced differentiation through ceramide-dependent inhibition of PPARγ activity. Conversely, C18:1 primed a pro-resolving macrophage which was PPARγ dependent and ceramide dependent and which required oxidative phosphorylation. These data suggest that a midlife adult FA profile impairs the switch from proinflammatory to lower energy, requiring anti-inflammatory macrophages through metabolic reprogramming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The presence of chronic inflammation is associated with increased nutrient availability during obesity or type 2 diabetes which contributes to the development of complications such as atherosclerosis, stroke and myocardial infarction. The link between increased nutrient availability and inflammatory response remains poorly understood. The functioning of monocytes, the primary instigators of the inflammatory response was assessed in response to obesity and increased glucose availability. Monocyte microRNA expression was assessed in obese individuals prior to and up to one year after bariatric surgery. A number of microRNAs were identified to be dysregulated in obesity, some of which have previously been linked to the regulation of monocyte inflammatory responses including the microRNAs 146a-5p and 424-5p. Weight loss in response to bariatric surgery lead to the reversal of microRNA changes towards control values. In vitro treatments of THP-1 monocytes with high concentrations of D-glucose resulted in decreased intracellular NAD+:NADH ratio, decreased SIRT1 deacetylase activity and increased P65 acetylation. However the increased osmotic concentration inhibited LPS induced inflammatory response and TNFα mRNA expression. In vitro treatment of primary human monocytes with increased concentrations of D-glucose resulted in increased secretion of a number of inflammatory cytokines and increased expression of TNFα mRNA. Treatment also resulted in decreased intracellular NAD+:NADH ratio and increased binding of acetylated P65 to the TNFα promoter region. In vitro treatments of primary monocytes also replicated the altered expression of the microRNAs 146a-5p and miR-424-5p, as seen in obese individuals. In conclusion a number of changes in monocyte function were observed in response to obesity and treatment with high concentrations of D-glucose. These may lead to the dysregulation of inflammatory responses contributing to the development of co-morbidities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Overactive Bladder (OAB) and Bladder Pain Syndrome (BPS) are debilitating disorders for which the pathophysiological mechanisms are poorly understood. Injury or dysfunction of the protective urothelial barrier layer, specifically the proteoglycan composition and number, has been proposed as the primary pathological characteristic of BPS. For OAB, the myogenic theory with dysfunction of the muscarinic receptors is the most reiterated hypothesis. For both over activity of the inflammatory response has been posited to play a major role in these diseases. We hypothesise that BPS and OAB are peripheral sensory disorders, with an increase in inflammatory mediators, such as cytokines and chemokines, which are capable of activating, either directly or indirectly, sensory nerve activity causing the disease. The aim of the PhD is to identify potential new therapeutic targets for the treatment of BPS and OAB. We used medium throughput quantitative gene expression analysis of 96 inflammation associated mediators to measure gene expression levels in BPS and OAB bladder biopsies and compared them to control samples. Then we created a novel animal model of disease by specific proteoglycan deglycosylation of the bladder mucosal barrier, using the bacterial enzymes Chondroitinase ABC and Heparanase III. These enzymes specifically remove the glycosaminoglycan side chains from the urothelial proteoglycan molecules. We tested role of the identified mediators in this animal model. In addition, in order to determine on which patients peripheral treatment strategies may work, we assessed the effect of local anaesthetics on patients with bladder pain. Gene expression analysis did not reveal a difference in inflammatory genes in the OAB versus control biopsies. However, several genes were upregulated in BPS versus control samples, from which two genes, FGF7 and CLL21 were correlated with patient clinical phenotypes for ICS/PI symptom and problem indices respectively. In order to determine which patients are likely to respond to treatment, we sought to characterise the bladder pain in BPS patients. Using urodynamics and local anaesthetics, we differentiated patients with peripherally mediated pain and patients with central sensitisation of their pain. Finally to determine the role of these mediators in bladder pain, we created an animal model of disease, which specifically replicates the human pathology: namely disruption in the barrier proteoglycan molecules. CCL21 led to an increase in painrelated behaviour, while FGF7 attenuated this behaviour, as measured by cystometry, spinal c-fos expression and mechanical withdrawal threshold examination. In conclusion, we have identified CCL21 and FGF7 as potential targets for the treatment of BPS. Manipulation of these ligands or their receptors may prove to be valuable previously unexploited targets for the treatment of BPS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sodium caseinate (NaCN) was incubated prior to and after hydrolysis with a microbial transglutaminase (TGase) and hydrolysed with Prolyve 1000. The resultant hydrolysates were tested for their immunomodulatory and antioxidant activity. TGase-treated hydrolysates significantly reduced (p < 0.05) the production of IL-6 at 0.5 and 1 mg mL−1 and the non-TGase treated hydrolysate reduced the production of IL-6 at 1 mg mL−1 in concanavalin (ConA) stimulated Jurkat T cells. None of the samples had an effect on IL-2. The hydrolysates showed higher oxygen radical absorbance capacity assay and ferric reducing antioxidant power activity than unhydrolysed NaCN, but no significant (p > 0.05) differences were found between the TGase-treated and non-TGase-treated samples. In the presence of hydrogen peroxide, the non-TGase-treated sample exhibited the highest DNA protective effect in U937 cells. These findings suggest that NaCN derived hydrolysates with and without treatment with TGase may exert specific antioxidant, genoprotective and anti-inflammatory effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current evidence indicates that chylomicron remnants (CMR) induce macrophage foam cell formation, an early event in atherosclerosis. Inflammation also plays a part in atherogenesis and the transcription factor nuclear factor-kappaB (NF-kappaB) has been implicated. In this study, the influence of CMR on the activity of NF-kappaB in macrophages and its modulation by the fatty acid composition of the particles were investigated using macrophages derived from the human monocyte cell line THP-1 and CMR-like particles (CRLPs). Incubation of THP-1 macrophages with CRLPs caused decreased NF-kappaB activation and downregulated the expression of phospho-p65-NF-kappaB and phospho-IkappaBalpha (pIkappaBalpha). Secretion of the inflammatory cytokines tumour necrosis factor alpha, interleukin-6 and monocyte chemoattractant protein-1, which are under NF-kappaB transcriptional control, was inhibited and mRNA expression for cyclooxygenase-2, an NF-kappaB target gene, was reduced. CRLPs enriched in polyunsaturated fatty acids compared with saturated or monounsaturated fatty acids had a markedly greater inhibitory effect on NF-kappaB binding to DNA and the expression of phospho-p65-NF-kappaB and pIkappaB. Lipid loading of macrophages with CRLPs enriched in polyunsaturated fatty acids compared with monounsaturated fatty acids or saturated fatty acids also increased the subsequent rate of cholesterol efflux, an effect which may be linked to the inhibition of NF-kappaB activity. These findings demonstrate that CMR suppress NF-kappaB activity in macrophages, and that this effect is modulated by their fatty acid composition. This downregulation of inflammatory processes in macrophages may represent a protective effect of CMR which is enhanced by dietary polyunsaturated fatty acids.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cysteine protease cathepsin C (CatC) activates granule-associated proinflammatory serine proteases in hematopoietic precursor cells. Its early inhibition in the bone marrow is regarded as a new therapeutic strategy for treating proteolysis-driven chronic inflammatory diseases, but its complete inhibition is elusive in vivo Controlling the activity of CatC may be achieved by directly inhibiting its activity with a specific inhibitor or/and by preventing its maturation. We have investigated immunochemically and kinetically the occurrence of CatC and its proform in human hematopoietic precursor cells and in differentiated mature immune cells in lung secretions. The maturation of proCatC obeys a multistep mechanism that can be entirely managed by CatS in neutrophilic precursor cells. CatS inhibition by a cell-permeable inhibitor abrogated the release of the heavy and light chains from proCatC and blocked ∼80% of CatC activity. Under these conditions the activity of neutrophil serine proteases, however, was not abolished in precursor cell cultures. In patients with neutrophilic lung inflammation, mature CatC is found in large amounts in sputa. It is secreted by activated neutrophils as confirmed through lipopolysaccharide administration in a nonhuman primate model. CatS inhibitors currently in clinical trials are expected to decrease the activity of neutrophilic CatC without affecting those of elastase-like serine proteases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and aims: Inflammation has long been regarded as a major contributor to cellular oxidative damage and to be involved in the promotion of carcinogenesis. Methods: We aimed to investigate the oxidative damage in inflammatory bowel disease [IBD] patients through a case–control and prospective study involving 344 IBD patients and 294 healthy controls. DNA damage and oxidative DNA damage were measured by comet assay techniques, and oxidative stress by plasmatic lipid peroxidation, protein carbonyls, and total antioxidant capacity. Results: Higher DNA damage [p < 0.001] was found both in Crohn’s disease [CD] (9.7 arbitrary units [AU]; interquartile range [IQR]: 6.2–14.0) and ulcerative colitis [UC] [7.1 AU; IQR: 4.4–11.7], when compared with controls [5.4 AU; IQR: 3.8–6.8], and this was also the case with oxidative DNA damage [p < 0.001] [CD: 3.6 AU; IQR: 1.8–6.8; UC: 4.6 AU; IQR: 2.4–8.1], when compared with controls: 2.3 AU; IQR: 1.2–4.2]. Stratifying patients into groups according to therapy (5-aminosalicylic acid [5-ASA], azathioprine, anti-TNF, and combined therapy [azathioprine and anti-TNF]) revealed significant between-group differences in the level of DNA damage, both in CD and UC, with the combined therapy exhibiting the highest DNA damage levels [11.6 AU; IQR: 9.5–14.3, and 12.4 AU; IQR: 10.6–15.0, respectively]. Among CD patients, disease behaviour [B1 and B2], and age at diagnosis over 40 years [A3] stand as risk factors for DNA damage. For UC patients, the risk factors found for DNA damage were disease activity, treatment, age at diagnosis under 40 years [A1 + A2] and disease locations [E2 and E3]. Conclusions: In IBD there is an increase in DNA damage, and treatment, age at diagnosis and inflammatory burden seem to be risk factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in equine veterinary practice. These drugs exert their effect by inhibiting cyclooxygenase (COX) enzymes, which control prostaglandin production, a major regulator of tissue perfusion. Two isoforms of COX enzymes exist: COX-1 is physiologically present in tissues, while COX-2 is up-regulated during inflammation and has been indicated as responsible for the negative effects of an inflammatory response. Evidence suggests that NSAIDs that inhibit only COX-2, preserving the physiological function of COX-1 might have a safer profile. Studies that evaluate the effect of NSAIDs on COX enzymes are all performed under experimental conditions and none uses actual clinical patients. The biochemical investigations in this work focus on describing the effect on COX enzymes activity of flunixin meglumine and phenylbutazone, two non-selective COX inhibitors and firocoxib, a COX-2 selective inhibitor, in clinical patients undergoing elective surgery. A separate epidemiological investigation was aimed at describing the impact that the findings of biochemical data have on a large population of equids. Electronic medical records (EMRs) from 454,153 equids were obtained from practices in the United Kingdom, United States of America and Canada. Information on prevalence and indications for NSAIDs use was extracted from the EMRs via a text mining technique, improved from the literature and described and validated within this Thesis. Further the prevalence of a clinical sign compatible with NSAID toxicity, such as diarrhoea, is reported along with analysis evaluating NSAID administration in light of concurrent administration of other drugs and comorbidities. This work confirms findings from experimental settings that NSAIDs firocoxib is COX-2 selective and that flunixin meglumine and phenylbutazone are non-selective COX inhibitors and therefore their administration carries a greater risk of toxicity. However the impact of this finding needs to be interpreted with caution as epidemiological data suggest that the prevalence of toxicity is in fact small and the use of these drugs at the labelled dose is quite safe.