953 resultados para Incompressible flows
Resumo:
This thesis concerns mixed flows (which are characterized by the simultaneous occurrence of free-surface and pressurized flow in sewers, tunnels, culverts or under bridges), and contributes to the improvement of the existing numerical tools for modelling these phenomena. The classic Preissmann slot approach is selected due to its simplicity and capability of predicting results comparable to those of a more recent and complex two-equation model, as shown here with reference to a laboratory test case. In order to enhance the computational efficiency, a local time stepping strategy is implemented in a shock-capturing Godunov-type finite volume numerical scheme for the integration of the de Saint-Venant equations. The results of different numerical tests show that local time stepping reduces run time significantly (between −29% and −85% CPU time for the test cases considered) compared to the conventional global time stepping, especially when only a small region of the flow field is surcharged, while solution accuracy and mass conservation are not impaired. The second part of this thesis is devoted to the modelling of the hydraulic effects of potentially pressurized structures, such as bridges and culverts, inserted in open channel domains. To this aim, a two-dimensional mixed flow model is developed first. The classic conservative formulation of the 2D shallow water equations for free-surface flow is adapted by assuming that two fictitious vertical slots, normally intersecting, are added on the ceiling of each integration element. Numerical results show that this schematization is suitable for the prediction of 2D flooding phenomena in which the pressurization of crossing structures can be expected. Given that the Preissmann model does not allow for the possibility of bridge overtopping, a one-dimensional model is also presented in this thesis to handle this particular condition. The flows below and above the deck are considered as parallel, and linked to the upstream and downstream reaches of the channel by introducing suitable internal boundary conditions. The comparison with experimental data and with the results of HEC-RAS simulations shows that the proposed model can be a useful and effective tool for predicting overtopping and backwater effects induced by the presence of bridges and culverts.
Technology sourcing versus technology exploitation:An analysis of US foreign direct investment flows
Resumo:
The traditional paradigm of foreign direct investment (FDI) suggests that FDI is undertaken principally to exploit some firm-specific advantage in a foreign country which provides a locational advantage to the investor. However, recent theoretical work suggests a model of FDI in which the motivation is not to exploit existing technological advantages in a foreign country, but to access such technology and transfer it from the host economy to the investing multinational corporation via spillover effects. This paper tests the technology sourcing versus technology exploiting hypotheses for a panel of sectoral FDI flows between the United States and major OECD nations over a 15 year period. The research makes use of Patel and Vega's (Research Policy, 28, 145-55, 1999) taxonomy of sectors which are likely a priori to exhibit technology sourcing and exploiting behaviour respectively. While there is evidence that FDI flows into the United States are attracted to R and D intensive sectors, very little support is found for the technology sourcing hypothesis either for inward or outward FDI flows. The results suggest that, in aggregate, firm-specific 'ownership' effects remain powerful determinants of FDI flows.
Resumo:
The transition of internally heated inclined plane parallel shear flows is examined numerically for the case of finite values of the Prandtl number Pr. We show that as the strength of the homogeneously distributed heat source is increased the basic flow loses stability to two-dimensional perturbations of the transverse roll type in a Hopf bifurcation for the vertical orientation of the fluid layer, whereas perturbations of the longitudinal roll type are most dangerous for a wide range of the value of the angle of inclination. In the case of the horizontal inclination transverse roll and longitudinal roll perturbations share the responsibility for the prime instability. Following the linear stability analysis for the general inclination of the fluid layer our attention is focused on a numerical study of the finite amplitude secondary travelling-wave solutions (TW) that develop from the perturbations of the transverse roll type for the vertical inclination of the fluid layer. The stability of the secondary TW against three-dimensional perturbations is also examined and our study shows that for Pr=0.71 the secondary instability sets in as a quasi-periodic mode, while for Pr=7 it is phase-locked to the secondary TW. The present study complements and extends the recent study by Nagata and Generalis (2002) in the case of vertical inclination for Pr=0.
Resumo:
By engaging in trade and foreign direct investment (FDI) with foreign partners, a country can access the R&D and related knowledge stocks of other countries (by accident or by design) and so benefit from those stocks of knowledge at a cost lower than that which would be incurred by developing the knowledge internally. This should lead to beneficial ‘spillover’ effects on the productivity of domestic firms. However, the literature on technology spillovers from trade and FDI is ambiguous in its findings. This may in part be because of the assumption in much of the work that trade and FDI flows are homogeneous in their determinants and thus in their effects. We develop a taxonomy of trade and FDI determinants based on R&D intensity and unit labour cost differentials, and test for the presence of spillovers from inward investment and imports on an extensive sample of UK manufacturing plants. We find that both trade and FDI have measurable spillover effects, but the size of these effects varies depending on the technological and labour cost differentials between the UK and its trading partners. There is therefore an identifiable link between the determinants and effects of trade and FDI which the previous literature has not explored. We also find that absorptive capacity matters for spillovers from FDI, but not from trade. Overall, these findings suggest that the productivity effects of FDI are largely restricted to plants with high absorptive capacity, while the productivity effects of imports occur largely among higher-technology plants regardless of their absorptive capacity.
Resumo:
The paper presents a comparison between the different drag models for granular flows developed in the literature and the effect of each one of them on the fast pyrolysis of wood. The process takes place on an 100 g/h lab scale bubbling fluidized bed reactor located at Aston University. FLUENT 6.3 is used as the modeling framework of the fluidized bed hydrodynamics, while the fast pyrolysis of the discrete wood particles is incorporated as an external user defined function (UDF) hooked to FLUENT’s main code structure. Three different drag models for granular flows are compared, namely the Gidaspow, Syamlal O’Brien, and Wen-Yu, already incorporated in FLUENT’s main code, and their impact on particle trajectory, heat transfer, degradation rate, product yields, and char residence time is quantified. The Eulerian approach is used to model the bubbling behavior of the sand, which is treated as a continuum. Biomass reaction kinetics is modeled according to the literature using a two-stage, semiglobal model that takes into account secondary reactions.
Resumo:
The stability of internally heated convective flows in a vertical channel under the influence of a pressure gradient and in the limit of small Prandtl number is examined numerically. In each of the cases studied the basic flow, which can have two inflection points, loses stability at the critical point identified by the corresponding linear analysis to two-dimensional states in a Hopf bifurcation. These marginal points determine the linear stability curve that identifies the minimum Grashof number (based on the strength of the homogeneous heat source), at which the two-dimensional periodic flow can bifurcate. The range of stability of the finite amplitude secondary flow is determined by its (linear) stability against three-dimensional infinitesimal disturbances. By first examining the behavior of the eigenvalues as functions of the Floquet parameters in the streamwise and spanwise directions we show that the secondary flow loses stability also in a Hopf bifurcation as the Grashof number increases, indicating that the tertiary flow is quasi-periodic. Secondly the Eckhaus marginal stability curve, that bounds the domain of stable transverse vortices towards smaller and larger wavenumbers, but does not cause a transition as the Grashof number increases, is also given for the cases studied in this work.
Resumo:
The stability of internally heated inclined plane parallel shear flows is examined numerically for the case of finite value of the Prandtl number, Pr. The transition in a vertical channel has already been studied for 0≤Pr≤100 with or without the application of an external pressure gradient, where the secondary flow takes the form of travelling waves (TWs) that are spanwise-independent (see works of Nagata and Generalis). In this work, in contrast to work already reported (J. Heat Trans. T. ASME 124 (2002) 635-642), we examine transition where the secondary flow takes the form of longitudinal rolls (LRs), which are independent of the steamwise direction, for Pr=7 and for a specific value of the angle of inclination of the fluid layer without the application of an external pressure gradient. We find possible bifurcation points of the secondary flow by performing a linear stability analysis that determines the neutral curve, where the basic flow, which can have two inflection points, loses stability. The linear stability of the secondary flow against three-dimensional perturbations is also examined numerically for the same value of the angle of inclination by employing Floquet theory. We identify possible bifurcation points for the tertiary flow and show that the bifurcation can be either monotone or oscillatory. © 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
Resumo:
Sales leadership research has typically taken a leader-focused approach, investigating key questions from a top-down perspective. Yet considerable research outside sales has advocated a view of leadership that takes into account the fact that employees look beyond a single designated individual for leadership. In particular, the social networks of leaders have been a popular topic of investigation in the management literature, although coverage in the sales literature remains rare. The present paper conceptualizes the sales leadership role as one in which the leader must manage a network of simultaneous relationships; several types of sales manager relationships, such as the sales-manager-to-top-manager and the sales-manager-to-sales manager relationships, have received limited attention in the sales literature to date. Taking an approach based on social network theory, we develop a conceptualization of the sales manager as a "network engineer," who must manage multiple relationships, and the flows between them. Drawing from this model, we propose a detailed agenda for future sales research. © 2012 PSE National Educational Foundation. All rights reserved.