928 resultados para Image analysis
Resumo:
Purpose To evaluate condylar changes 1 year after bimaxillary surgical advancement with or without articular disc repositioning using longitudinal quantitative measurements in 3-dimensional (3D) temporomandibular joint (TMJ) models. Methods Twenty-seven patients treated with maxillomandibular advancement (MMA) underwent cone-beam computed tomography before surgery, immediately after surgery, and at 1-year follow-up. All patients underwent magnetic resonance imaging before surgery to assess disc displacements. Ten patients without disc displacement received MMA only. Seventeen patients with articular disc displacement received MMA with simultaneous TMJ disc repositioning (MMA-Drep). Pre- and postsurgical 3D models were superimposed using a voxel-based registration on the cranial base. Results The location, direction, and magnitude of condylar changes were displayed and quantified by graphic semitransparent overlays and 3D color-coded surface distance maps. Rotational condylar displacements were similar in the 2 groups. Immediately after surgery, condylar translational displacements of at least 1.5 mm occurred in a posterior, superior, or mediolateral direction in patients treated with MMA, whereas patients treated with MMA-Drep presented more marked anterior, inferior, and mediolateral condylar displacements. One year after surgery, more than half the patients in the 2 groups presented condylar resorptive changes of at least 1.5 mm. Patients treated with MMA-Drep presented condylar bone apposition of at least 1.5 mm at the superior surface in 26.4%, the anterior surface in 23.4%, the posterior surface in 29.4%, the medial surface in 5.9%, or the lateral surface in 38.2%, whereas bone apposition was not observed in patients treated with MMA. Conclusions One year after surgery, condylar resorptive changes greater than 1.5 mm were observed in the 2 groups. Articular disc repositioning facilitated bone apposition in localized condylar regions in patients treated with MMA-Drep. © 2013 American Association of Oral and Maxillofacial Surgeons.
Resumo:
Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis. © 2012 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT
Resumo:
Pós-graduação em Ciência Animal - FMVA
Resumo:
Pós-graduação em Ciências Fisiológicas - FOA
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)