941 resultados para ISOFORM NHE3


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Analysis of the human genome has revealed that more than 74% of human genes undergo alternative RNA splicing. Aberrations in alternative RNA splicing have been associated with several human disorders, including cancer. ^ We studied the aberrant expression of alternative RNA splicing isoforms of the Fibroblast Growth Factor Receptor 1 (FGFR1) gene in a human glioblastoma cancer model. Normal glial cells express the FGFR1α, which contains three extracellular domains. In tumors the most abundant isoform is the FGFR1β, which lacks the first extracellular domain due to the skipping of a single exon, termed alpha. The skipping of the α-exon is regulated by two intronic silencing sequences within the precursor mRNA. Since we observed no mutations on these elements in tumor cells, we hypothesized that the over-expression of regulatory proteins that recognize these sequences is responsible for the aberrant expression of splicing isoforms. Hence, we blocked the formation of protein complexes on the ISS using antisense RNA oligonucleotides in vitro. We also evaluated the impact of the ISS antisense oligonucleotides on the endogenous FGFR1 splicing, in a glioblastoma cell model. By targeting intronic regulatory elements we were able to increase the level of alpha exon inclusion up to 90% in glioblastoma cells. The effect was dose dependent, sequence specific and reproducible in glioblastoma and other cancer cells, which also exhibit an alpha exon skipping phenotype. Targeting FGFR1 endogenous ISS1 and ISS2 sequences did not have an additive or synergistic effect, which suggest a regulatory splicing mechanism that requires the interaction of complexes formed on these elements. An increase in the levels of the FGFR1α isoform resulted in a reduction in cell invasiveness. Also, a significant increase in the levels of caspase 3/7 activities, which is indicative of an elevation in apoptosis levels, suggests that expression of FGFR1β might be relevant for tumor survival. These studies demonstrate that it is possible to prevent aberrant expression of exon skipping events through the targeting of intronic regulatory elements, providing an important new therapeutic tool for the correction of human disease caused by alternative RNA splicing. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hematopoietic growth factors play important roles in regulating blood cell growth and development in vivo. In this work, we investigated the signaling mechanisms of two growth factors with clinical significance, erythropoietin (Epo) and granulocyte colony-stimulating factor (G-CSF). Epo is essential for the survival, proliferation and differentiation of red blood cell progenitors, while G-CSF plays an important role in controlling mature neutrophil production. To identify which amino acid(s) and/or motif in EpoR is responsible for cell survival, wild type or mutant EpoR isoforms were transfected into the growth factor-dependent 32D cell line. Proliferation and apoptosis assays demonstrated that an EpoR isoform that lacks intracellular tyrosine residues and is truncated after 321 amino acids in the cytoplasmic tail (EpoR 1-321) mediates Epo-dependent cell survival. Furthermore, in absence of fetal calf serum (FCS), Epo signaling through wild type or mutant receptors supported anti-apoptosis, but not proliferation during 72 hours in response to Epo. To investigate the signaling pathway by which EpoR regulates cell survival, a dominant negative Stat5b (dnStat5b) isoform was generated and coexpressed with EpoR in stable cell lines. Expression of dnStat5b causes a significant induction of apoptosis in the presence of Epo in cells expressing EpoR 1-321, indicating that Stat5 is essential for survival signaling through tyrosine independent sequences in the EpoR. In a second project to investigate G-CSF signaling, we studied mechanisms by which G-CSF regulates the expression of PU.1, an important transcription factor in myeloid and B cell development. We demonstrated, by immunoblot and real time RT-PCR, that PU.1 is induced by G-CSF ex vivo as well as in vivo. To test whether G-CSF signaling through Stat3 is required for PU.1 regulation, the upstream region of the PU.1 gene was analyzed for potential Stat3 binding motifs. Four potential sites were identified; chromatin immunoprecipitations demonstrated that G-CSF activated Stat3 binds to 3 of the 4 binding motifs. In addition, PU.1 induction by G-CSF was completely abrogated in bone marrow from hematopoietic conditional Stat3 knockout mice. These results indicate an important role for Stat3 in G-CSF-dependent PU.1 gene regulation. Collectively, our works demonstrate that Stat protein play important and diverse roles in hematopoietic growth factor signaling. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CYP4F subfamily comprises a group of enzymes that metabolize LTB4 to biologically less active metabolites. These inactive hydroxy products are incapable of chemotaxis and recruitment of inflammatory cells. This has led to a hypothesis that CYP4Fs may modulate inflammatory conditions serving as a signal of resolution. ^ We investigated the regulation of rat CYP4F gene expression under various inflammatory prompts including a bacterial lipopolysaccharide (LPS) treated model system, controlled traumatic brain injury (TBI) model as well as using direct cytokine challenges. CYP4Fs showed an isoform specific response to LPS. The pro-inflammatory cytokines IL-1β, IL-6 and TNF-α produced an overall inductive CYP4F response whereas IL-10, an anti-inflammatory cytokine, suppressed CYP4F gene expression in primary hepatocytes. The molecular mechanism behind IL-6 mediated CYP4F induction was partially STAT3 dependent. ^ An alternate avenue of triggering the inflammatory cascade is TBI, which is known to cause several secondary effects leading to multiorgan dysfunction syndrome. The results from this study elicited that trauma to the brain can produce acute inflammatory changes in organs distant from the injury site. Local production of LTB4 after CNS injury caused mobilization of inflammatory cells such as neutrophils to the lung. In the resolution phase, CYP4F expression increased with time along with the associated activity causing a decline in LTB4 concentration. This marked a significant reduction in neutrophil recruitment to the lung which led to subsequent recovery and repair. In addition, we showed that CYP4Fs are localized primarily in pulmonary endothelium. We speculate that the temporally regulated LTB4 clearance in the endothelium may be a novel target for treatment of pulmonary inflammation following injury. ^ In humans, several CYP4F isoforms have been identified and shown to metabolize LTB4 and other endogenous eicosanoids. However, the specific activity of the recently cloned human CYP4F11 is unknown. In the final part of this thesis, CYP4F11 protein was expressed in yeast in parallel to CYP4F3A. To our surprise, CYP4F11 displayed a different substrate profile than CYP4F3A. CYP4F3A metabolized eicosanoids while CYP4F11 was a better catalyst for therapeutic drugs. Thus, besides their endogenous function in clearing inflammation, CYP4Fs also may play a part in drug metabolism. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochrome P450 3As (CYP3As) are phase I enzymes responsible for metabolizing more than 50% of clinical drugs. Recent studies have revealed that expression of CYP3As is two-fold higher in women than in men leading to a faster metabolic clearance of therapeutic drugs in women. In this study, we analyzed the female specific rat CYP3A isoform, CYP3A9. We evaluated the effects of progesterone and estrogen on CYP3A9 regulation and showed a distinct role for estrogen in mediating female dominance of CYP3A9. We also observed changes in CYP3A9 expression at various stages of pregnancy which correlates well with varying physiological estradiol concentrations. In addition, by the in vitro data shows that estradiol mediated induction can be abrogated with estrogen receptor antagonist ICI182,780. We also identified three novel murine CYP3A isoforms CYP3A13, CYP3A41 and CYP3A44 and characterized their genomic structures and expression profiles. CYP3A41 and CYP3A44 show female specific expression but surprisingly this female dominance is not mediated via estrogen. Control male mice did not exhibit any CYP3A41 mRNA levels but showed minimal levels of CYP3A44. In order to gain insights into the governance ofαthe female specific genes, the hepatic regulation of CYP3A41 and CYP3A44 by the xeno-sensors PXR and CAR was examined. In female mice, pregnenolone-16α-carboxynitrile, suppressed CYP3A41 and CYP3A44 mRNA levels in PXR−/− background whereas dexamethasone-dependent suppression of CYP3A41 was mediated by PXR. In addition, phenobarbital challenge in PXR−/− revealed up-regulation of both CYP3A44, CYP3A41 levels only in males. No role for CAR was seen in the regulation of either CYP3A41 or CYP3A44 gene expression in female mice. Interestingly, PXR and CAR ligands induced male CYP3A44 levels in a receptor dependent fashion. This increase of CYP3A44 transcript in male mice is in contrast to the response seen in female mice, which clearly indicates an additional layer of regulation. Our findings suggest that gender plays a strategic role in directing the CAR/PXR mediated effects of CYP3A44/CYP3A41. This implies that differential regulation of female specific CYP3A isoforms may be the key to explain some of the gender differences observed in clearance of certain therapeutics like antidepressants and analgesics. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochromes P450 4Fs (CYP4F) are a subfamily of enzymes involved in arachidonic acid metabolism with highest catalytic activity towards leukotriene B 4 (LTB4), a potent chemoattractant involved in prompting inflammation. CYP4F-mediated metabolism of LTB4 leads to inactive ω-hydroxy products incapable of initiating chemotaxis and the inflammatory stimuli that result in the influx of inflammatory cells. Our hypothesis is based on the catalytic ability of CYP4Fs to inactivate pro-inflammatory LTB4 which assures these enzymes a pivotal role in the process of inflammation resolution. ^ To test this hypothesis and evaluate the changes in CYP4F expression under complex inflammatory conditions, we designed two mouse models, one challenged with lipopolysaccharide (LPS) as a sterile model of sepsis and the other challenged with a systemic live bacterial infection of Citrobacter rodentium, an equivalent of the human enterobacterium E. coli pathogen invasion. Based on the evidence that Peroxisome Proliferator Activated Receptors (PPARs) play an active role in inflammation regulation, we also examined PPARs as a regulation mechanism in CYP4F expression during inflammation using PPARα knockout mice under LPS challenge. Using the Citrobacter rodentium model of inflammation, we studied CYP4F levels to compare them to those in LPS challenged animals. LPS-triggered inflammation signal is mediated by Toll-like 4 (TLR4) receptors which specifically respond to LPS in association with several other proteins. Using TLR4 knockout mice challenged with Citrobacter rodentium we addressed possible mediation of CYP4F expression regulation via these receptors. ^ Our results show isoform- and tissue-specific CYP4F expression in all the tissues examined. The Citrobacter rodentium inflammation model revealed significant reduction in liver expression of CYP4F14 and CYP4F15 and an up-regulation of gene expression of CYP4F16 and CYP4F18. TLR4 knockout studies showed that the decrease in hepatic CYP4F15 expression is TLR4-dependent. CYP4F expression in kidney shows down-regulation of CYP4F14 and CYP4F15 and up-regulation of CYP4F18 expression. In the LPS inflammation model, we showed similar patterns of CYP4F changes as in Citrobacter rodentium -infected mice. The renal profile of CYP4Fs in PPARα knockout mice with LPS challenge showed CYP4F15 down-regulation to be PPARα dependent. Our study confirmed tissue- and isoform-specific regulation of CYP4F isoforms in the course of inflammation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Caenorhabditis elegans germline is an excellent model system for studying meiosis, as the gonad contains germ cells in all stages of meiosis I prophase in a linear temporal and spatial pattern. To form healthy gametes, many events must be coordinated. Failure of any step in the process can reduce fertility. Here, we describe a C. elegans Germinal Center Kinase, GCK-1, that is essential for the accurate progression of germ cells through meiosis I prophase. In the absence of GCK-1, germ cells undergo precocious maturation due to the activation of a specific MAP kinase isoform. Furthermore, GCK-1 localizes to P-bodies, RNP particles that have been implicated in RNA degradation and translational control. Like two other components of C. elegans germline P-bodies, GCK-1 functions to limit physiological germ cell apoptosis. This is the first study to identify a role for a GCK-III kinase in metazoan germ cell development and to link P-body function with MAP kinase activation and germ cell maturation. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human cytochrome P450 3A (CYP3A) subfamily is responsible for most of the metabolism of therapeutic drugs; however, an adequate in vivo model has yet to be discovered. This study begins with an investigation of a controversial topic surrounding the human CYP3As--estrogen regulation. A novel approach to this topic was used by defining expression in the estrogen-responsive endometrium. This study shows that estrogen down-regulates CYP3A4 expression in the endometrium. On the other hand, analogous studies showed an increase in CYP3A expression as age increases in liver tissue. Following the discussion of estrogen regulation, is an investigation of the cross-species relationships among all of the CYP3As was completed. The study compares isoforms from piscines, avians, rodents, canines, ovines, bovines, and primates. Using the traditional phylogenetic analyses and employing a novel approach using exon and intron lengths, the results show that only another primate could be the best animal model for analysis of the regulation of the expression of the human CYP3As. This analysis also demonstrated that the chimpanzee seems to be the best available human model. Moreover, the study showed the presence and similarities of one additional isoform in the chimpanzee genome that is absent in humans. Based on these results, initial characterization of the chimpanzee CYP3A subfamily was begun. While the human genome contains four isoforms--CYP3A4, CYP3A5, CYP3A7, and CYP3A43--the chimpanzee genome has five, the four previously mentioned and CYP3A67. Both species express CYP3A4, CYP3A5, and CYP3A43, but humans express CYP3A7 while chimpanzees express CYP3A67. In humans, CYP3A4 is expressed at higher levels than the other isoforms, but some chimpanzee individuals express CYP3A67 at higher levels than CYP3A4. Such a difference is expected to alter significantly the total CYP3A metabolism. On the other hand, any study considering individual isoforms would still constitute a valid method of study for the human CYP3A4, CYP3A5, and CYP3A43 isoforms. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The studies completed herein explore different phenotypes related to the genetic defects that predispose individuals to a disruption of normal hemostasis. In the first study, a novel autosomal dominant bleeding disorder, which is characterized by excessive bleeding with trauma or surgery and menorrhagia in affected women, was studied in a large family (16 affected individuals) from east Texas. Affected members had a prolongation of their PT and/or aPTT, but normal clinical coagulation studies. Previous linkage analysis by Kuang et. al. (2001) mapped the defective gene to 1g23-24 (LODmax 7.22), which contains the gene for coagulation factor V (FV). I identified an alteration (A2440G) in the FV gene in exon 13 that segregated with the disease and was not present in 62 controls. Interestingly, this alteration resulted in a 22-fold up-regulation of a novel alternative splicing variant in patients' RNA versus controls. This translated into a similar fold increase in a 250-kDa isoform of FV seen in patients' plasma versus controls. A recombinant of this splicing event exhibited an increased sensitivity to cleavage by activated protein C (APC) that was more striking in the presence of PS. In addition, this novel isoform had increased APC cofactor activity, thus increasing the degradation of FVIIIa. These data indicated that A2440G up-regulates an alternatively spliced transcript of FV, and increases a FV isoform that hinders coagulation as opposed to promoting it like its wild-type counterpart. ^ The second study reports the largest screening to date of African Americans in two independent cohorts for a rare prothrombin variant, C20209T, which is suspected to be associated with thrombotic disease. The Texas Medical Center Genetics Resource (TexGen) Stroke DNA repository revealed 1.67% (Fisher p=0.27) of African American stroke patients were heterozygous for the 20209*T allele. Screening of the Atherosclerosis Risk in Communities Study (ARIC) cohort (n=3470) for the 20209*T allele revealed a population prevalence of 0.58% in individuals of African American descent; however, all associations with thrombotic disease were negative. Analysis of these two independent cohorts revealed that, unlike its neighbor G20210A, the C20209T variant does not increase the risk of thrombotic events in the African American population. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Staphylococcus aureus is a globally prevalent pathogen that can cause a wide variety of acute and chronic diseases in both adults and children, in both immune susceptible populations and healthy individuals. Its ability to cause persistent infections has been linked to multiple immune evasion strategies, including Efb-mediated complement inhibition. As new multi-drug-resistant strains emerge, therapeutic alternatives to traditional antibiotics must be developed. These experiments assessed the ability of healthy patient immunoglobulin to cleave Efb and disable the complement-inhibitory properties of Efb in vitro. Levels of immunoglobulin-mediated Efb catalysis varied both between immunoglobulin isoform/isotype and between individuals. Serum IgG showed the strongest catalytic activity of the immunoglobulin isotypes tested. Additionally, IgG hydrolyzed the virulence factor in a way that enabled only minimal binding to the complement component C3b, effectively blocking Efb-mediated inhibition of complement lysis. Salivary IgA and serum IgM did not block Efb-mediated inhibition of complement. Catalytic IgG selectively cleaved Efb and showed no cleavage of a variety of other proteins tested. Catalytic activity of IgG was inhibited by serine protease inhibitors, but not by other protease inhibitors, suggesting a serine-protease mechanism of catalysis. It is proposed that varying concentrations and activity levels of catalytic IgG between healthy individuals and those with current or recurrent S. aureus infections in both adult and pediatric populations be studied in order to assess the potential effectiveness of passive immunization therapy with catalytic monoclonal IgG. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adenylyl cyclase (AC) converts ATP into cAMP, which activates protein kinase A (PKA). Activation of PKA leads to the phosphorylation of specific substrates. The mechanism of specificity of PKA phosphorylation baffled researchers for many years. The discovery of A Kinase Anchoring Proteins (AKAPs) has helped to unravel this mystery. AKAPs function to target PKA to specific regions within the cell. They also anchor other enzymes, receptors, or channels leading to tightly regulated signaling modules. Several studies have suggested an important role for activated PKA in these complexes, including the AKAPs yotiao and muscle AKAP (mAKAP). Yotiao, a plasma membrane AKAP, anchors PP1, NMDA receptors, IP3 receptors, and heart potassium channel subunit KCNQI. PKA phosphorylation of NMDA receptors as well as KCNQI leads to increased channel activity. Patients with mutations in KCNQI or yotiao that cause loss of targeting of KCNQI develop long QT syndrome, which can be fatal. mAKAP anchors several CAMP/PKA-regulated pathways to the nuclear envelope in cardiac myocytes. The necessity of activated PKA in these complexes led to the hypothesis that AC is also anchored. The results indicate that AC does associate with yotiao in brain and heart, specifically with AC types I-III, and IX. Co-expression of AC II or III with yotiao leads to inhibition of each isoform's activity. Binding assays revealed that yotiao binds to the N-terminus of AC II and that this region can reverse the inhibition of AC II, but not AC III, indicating unique binding sites on yotiao. AC II binds directly to as 808-957 of yotiao. Y808-957 acts as a dominant negative as the addition of it to rat brain membranes results in a ∼40% increase in AC activity. Additionally, AC was also found to associate with mAKAP in heart, specifically with AC types II and V. The binding site of AC was mapped to 275-340 of mAKAP, while mAKAP binds to the soluble domains of AC V as a complex. These results indicate that interactions between AC and AKAPs are specific and that AC plays an important role in AKAP-targeted signaling. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alternative RNA splicing plays an integral role in cell fate determination and function, especially in the cells of the brain. Errors in RNA processing contribute to diseases such as cancer, where it leads to the production of oncogenic proteins or the loss of tumor suppressors. In silica mining suggests that hundreds of splice isoforms are misexpressed in the glial cell-derived glioma. However, there is little experimental evidence of the prevalence and contribution of these changes and whether they contribute to the formation and progression of this devastating malignancy. To determine the frequency of these aberrant events, global profiling of alternative RNA splice patterns in glioma and nontumor brain was conducted using an exon array. Most splicing changes were less than 5-fold in magnitude and 14 cassette exon events were validated, including 7 previously published events. To determine the possible causes of missplicing, the differential expression levels of splicing factors in these two tissues were also analyzed. Six RNA splicing factors had greater than 2-fold changes in expression. The highest differentially expressed factor was polypyrimidine tract binding protein-1 (PTB). Evaluation by immunohistochemistry determined that this factor was elevated in both early and late stages of glioma. Glial cell-specific PTB expression in the adult brain led me to examine the role of PTB in gliomagenesis. Downregulation of PTB slowed glioma cell proliferation and migration and enhanced cell adhesion to fibronectin and vitronectin. To determine whether PTB was affecting these processes through splicing, genome-wide exon expression levels were correlated with PTB levels. Surprisingly, previously reported PTB target transcripts were insensitive to changes in PTB levels in both patient samples and PTB-depleted glioma cells. Only one validated glioma-specific splice target, RTN4/Nogo, had a significant PTB-mediated splicing change. Downregulation of PTB enhanced inclusion of its alternative exon 3, which encodes an auxiliary domain within a neurite inhibitor protein. Overexpression of this splice isoform in glioma cells slowed proliferation in a manner similar to that observed in PTB knockdown cells. In summary, aberrant expression of splicing factors such as PTB in glioma may elicit changes in splicing patterns that enhance tumorigenesis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of cell surface receptors transduces extracellular signals into cellular responses such as proliferation, differentiation and survival. However, the appropriate spatial and temporal down-regulation of signaling receptors is essential for normal development and homeostasis. The Cbl family of E3-ubiquitin ligases plays a major role for the ligand-dependent inactivation of growth factor receptors through ubiquitin-mediated endocytosis and lysosomal degradation. Here, we report the D-cbl mutant phenotypes in the Drosophila eye. D-cbl mutants display overgrowth, inhibition of apoptosis, differentiation defects and increased ommatidial spacing. Many of these phenotypes are caused by lack of down-regulation of the Drosophila EGFR signaling. However, not all D-cbl phenotypes can be explained by inappropriate EGFR activity. We found that D-Cbl also negatively regulates Notch activity during eye and wing development. D-cbl produces two isoforms by alternative splicing. Strikingly, the long isoform, D-CblL, preferentially regulates the EGFR, whereas the short isoform, D-CblS, preferentially regulates Notch. Taken together, these data suggest that D-Cbl controls at least two signaling pathways, EGFR and Notch, through production of two alternatively spliced isoforms during development in Drosophila.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cytochromes P450 comprise a superfamily of heme-containing mono-oxygenases. These enzymes metabolize numerous xenobiotics, but also play a role in metabolism of endogenous compounds. The P450 1A1 enzyme generally metabolizes polycyclic aromatic hydrocarbons, and its expression can be induced by aryl hydrocarbon receptor (AhR) activation. CYP1A1 is an exception to the generality that the majority of CYPs demonstrate highest expression in liver; CYP1Al is present in numerous extrahepatic tissues, including brain. This P450 has been observed in two forms, wildtype (WT) and brain variant (BV), arising from alternatively spliced mRNA transcripts. The CYP1A1 BV mRNA presented an exon deletion and was detected in human brain but not liver tissue of the same individuals. ^ Quantitative PCR analyses were performed to determine CYP1A1 WT and BV transcript expression levels in normal, bipolar disorder or schizophrenic groups. In our samples, we show that CYP1A1 BV mRNA, when present, is found alongside the full-length form. Furthermore, we demonstrate a significant decrease in expression of CYP1A1 in patients with bipolar disorder or schizophrenia. The expression level was not influenced by post-mortem interval, tissue pH, age, tobacco use, or lifetime antipsychotic medication load. ^ There is no indication of increased brain CYP1A1 expression in normal smokers versus non-smokers in these samples. We observed slightly increased CYP1A1 expression only in bipolar and schizophrenic smokers versus non-smokers. This may be indicative of complex interactions between neuronal chemical environments and AhR-mediated CYP1A1 induction in brain. ^ Structural homology modeling demonstrated that P450 1A1 BV has several alterations to positions/orientations of substrate recognition site residues compared to the WT isoform. Automated substrate docking was employed to investigate the potential binding of neurological signaling molecules and neurotropic drugs, as well as to differentiate specificities of the two P450 1A1 isoforms. We consistently observed that the BV isoform produced energetically favorable substrate dockings in orientations not observed for the same substrate in the WT isoform. These results demonstrated that structural differences, namely an expanded substrate access channel and active site, confer greater capacity for unique compound docking positions suggesting a metabolic profile distinct from the wildtype form for these test compounds. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytochromes P450 catalyze a monooxygenase reaction in which molecular oxygen is split and one oxygen atom is incorporated into the substrate. As a whole, P450 researchers have focused most of their attention on substrate metabolism and relatively little on how these enzymes are regulated. This study will focus on the regulation of two P450 isoforms known as, CYP2D6 and CYP4F11. ^ The human CYP2D gene locus contains two pseudogenes and one functional gene known as CYP2D6. This locus is highly polymorphic and produces several alternatively spliced transcripts from the pseudogene CYP2D7. My objective was to understand the role of SV5-in (splice variant 5), one of several alternative splice variants transcribed from the CYP2D7 pseudogene. My results indicate that SV5-in mRNA causes an increase in CYP2D6 protein levels and suggest that there is a role for SV5-in in regulation of CYP2D6 expression. ^ Second, CYP4F11 is a recently discovered and uncharacterized isoform, derived from the CYP4F subfamily. It metabolizes several clinically relevant drugs (i.e.—erythromycin and benzphetamine) and some endogenous inflammatory mediators (i.e.—LTB4). After evaluation of microarray data, I observed an increase in CYP4F11 mRNA levels from wild-type HCT116 cells compared to p53-null cells. Our objectives were to explore and understand this connection between p53 and CYP4F11. Microarray data were confirmed by Q-PCR, after which this effect was again observed at the protein level via Western blot and again at the promoter level via luciferase assay and chromatin immunoprecipitation. Our results indicate that p53 protein regulates expression of CYP4F11 mRNA and protein through CYP4F11 promoter binding (note that p53 binding to CYP4F11 DNA was not shown to be direct). These results signify a whole new level of regulation of drug metabolizing enzymes by p53. ^ An understanding of CYP4F11 regulation by p53 could help us understand another pathway leading to apoptosis or cell growth arrest. This can aid future drug studies and discover new drug metabolism pathways under the control of a tumor suppressor protein. An understanding of the CYP2D6 regulation pathway could illuminate the role of non-coding RNAs in the P450 field and potentially explain several inter-individual drug response variations observed in clinical medicine that are not yet completely explained by genotyping analysis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activation of Rho family small G proteins is thought to be a critical event in breast cancer development and metastatic progression. Rho protein activation is stimulated by a family of enzymes known as guanine nucleotide exchange factors (Rho GEFs). The neuroepithelioma transforming gene 1 (Net1) is a Rho GEF specific for the RhoA subfamily that is overexpressed in primary breast tumors and breast cancer cell lines. Net1 isoform expression is also required for migration and invasion of breast cancer cells in vitro. These data indicate that Net1 may be a critical regulator of metastatic progression in breast cancer. Net1 activity is negatively regulated by sequestration in the nucleus, and relocalization of Net1 outside the nucleus is required to stimulate RhoA activation, actin cytoskeletal reorganization, and oncogenic transformation. However, regulatory mechanisms controlling the extranuclear localization of Net1 have not been identified. In this study, we have addressed the regulation of Net1A isoform localization by Rac1. Specifically, co-expression of constitutively active Rac1 with Net1A stimulates the relocalization of Net1A from the nucleus to the plasma membrane in breast cancer cells, and results in Net1A activation. Importantly, Net1A localization is also driven by endogenous Rac1 activity. Net1A relocalizes outside the nucleus in cells spreading on collagen, and when endogenous Rac1 expression was silenced by siRNA, Net1A remained nuclear in spreading cells. These data indicate that Rac1 controls the localization of the Net1A isoform and suggests a physiological role for Net1A in breast cancer cell adhesion and motility.