926 resultados para Humidity sensors
Resumo:
Composites made of Calcium-modified lead titanate (PTCa) and poly (ether-etherketone) (PEEK) high performance polymer matrix were prepared in the film form using a hot press. The ceramic volume fraction reaches up to 60 percent providing a composite with 0-3 and 1-3 mixed connectivities due to the high ceramic content and the resulting materials could be considered PEEK-bonded PTCa particulate composite. The composites were characterized using piezoelectric spectroscopy and ultrasonic immersion techniques. Values up to 38.5 pC/N were obtained for the longitudinal d33 piezoelectric coefficient. The composite was surface-mounted on a carbon fiber plate-like specimen and the ability of the PTCa/PEEK composite to detect acoustic emission (AE) is reported. © 2006 IEEE.
Resumo:
An important stage in the solution of active vibration control in flexible structures is the optimal placement of sensors and actuators. In many works, the positioning of these devices in systems governed for parameter distributed is, mainly, based, in controllability approach or criteria of performance. The positions that enhance such parameters are considered optimal. These techniques do not take in account the space variation of disturbances. An way to enhance the robustness of the control design would be to locate the actuators considering the space distribution of the worst case of disturbances. This paper is addressed to include in the formulation of problem of optimal location of sensors and piezoelectric actuators the effect of external disturbances. The paper concludes with a numerical simulation in a truss structure considering that the disturbance is applied in a known point a priori. As objective function the C norm system is used. The LQR (Linear Quadratic Regulator) controller was used to quantify performance of different sensors/actuators configurations.
A novel biomagnetic instrumentation with four magnetoresistive sensors to evaluate gastric motility.
Resumo:
A novel instrumentation using anisotropic magnetoresistive (AMR) sensors associated with magnetic coils excitation was developed to evaluate gastrointestinal tract motility parameters. The susceptometer has four sensors that were used to measure the gastric activity contractions (GAC) in anaesthetized dogs, its performance was evaluated by manometry with good results.
Resumo:
The aim of this investigation was to evaluate four reference methods to estimate evapotranspiration (Makkink, Hargreaves, Class A pan and Radiation), compared tb Penman-Monteith method, that is considered standard by the Food and Agricultural Organization of the United Nations (FAO). Errors due to variable measurements in the reference evapotranspiration estimate were taken into consideration. The research was developed in an experimental area of the Department of Rural Engieering of the School of Agricultural and Veterinarian Sciences, Campus of Jaboticabal, São Paulo State University. An automated weather station was used and it was equipped with sensors to measure global and net radiation, temperature, relative humidity, and wind speed. The aftermath showed a better adjustment to Hargreaves. Makkink, Class A pan and Radiation methods are different from Penman-Monteith, therefore, they cannot be compared. To evaluate methods to estimate evapotranspiration and avoid possible evaluation errors, ETo estimate errors must be considered.
Resumo:
Modern agriculture demands investments in technology that allows the farmers to improve productivity and quality of their products, aiming to establish themselves in a competitive market. However, the high costs of acquiring and maintaining such technology may be an inhibiting factor to its spread and acceptance, mainly to a large number of small grain Brazilian farmers, who need low cost innovative technological solutions, suitable for their financial reality. Starting from this premise, this paper presents the development of a low cost prototype for monitoring the temperature and humidity of grains stored in silos, and the economic implications of cost/benefit ratio of innovative applications of low cost technology in the process of thermometry of grains. The prototype was made of two electronic units, one for acquisition and another one for data reception, as well as software, which offered the farmers more precise information for the control of aeration. The data communication between the electronic units and the software was reliable and both were developed using low cost electronic components and free software tools. The developed system was considered as potentially viable to small grain Brazilian farmers; it can be used in any type of small silos. It provided reduction of costs of installation and maintenance and also offered an easy expansion system; besides the low cost of development when compared to similar products available in the Brazilian market.
Resumo:
This paper presents a new approach for damage detection in Structural Health Monitoring (SHM) systems, which is based on the Electromechanical Impedance (EMI) principle and Autoregressive (AR) models. Typical applications of EMI in SHM are based on computing the Frequency Response Function (FRF). In this work the procedure is based on the EMI principle but the results are determined through the coefficients of AR models, which are computed from the time response of PZT transducers bonded to the monitored structure, and acting as actuator and sensors at the same time. The procedure is based on exciting the PZT transducers using a wide band chirp signal and getting its time response. The AR models are obtained in both healthy and damaged conditions and used to compute statistics indexes. Practical tests were carried out in an aluminum plate and the results have demonstrated the effectiveness of the proposed method. © 2012 IEEE.
Resumo:
This paper presents a new method to estimate hole diameters and surface roughness in precision drilling processes, using coupons taken from a sandwich plate composed of a titanium alloy plate (Ti6Al4V) glued onto an aluminum alloy plate (AA 2024T3). The proposed method uses signals acquired during the cutting process by a multisensor system installed on the machine tool. These signals are mathematically treated and then used as input for an artificial neural network. After training, the neural network system is qualified to estimate the surface roughness and hole diameter based on the signals and cutting process parameters. To evaluate the system, the estimated data were compared with experimental measurements and the errors were calculated. The results proved the efficiency of the proposed method, which yielded very low or even negligible errors of the tolerances used in most industrial drilling processes. This pioneering method opens up a new field of research, showing a promising potential for development and application as an alternative monitoring method for drilling processes. © 2012 Springer-Verlag London Limited.
Resumo:
As the psychrometric method is considered standard for the measurement of relative humidity, many studies have used aspirated thermocouple psychrometers connected to microloggers but, however, they do not detail how the aspiration of the air stream is done. However, one of the major difficulties of aspirated thermocouple psychrometers is to program and to connect it in micrologger, because specific programming and connection are requires, and still some skills in getting accurate measurements. This work aimed to provide the programming and the connection of the aspirated thermocouple psychrometer type T for the CR10X microloggers and CR23X of Campbell Scientific, evaluating the quality of measurements of temperature and air relative humidity in relation the a sensor Vaisala HMP50. The non-continuous measurements were made in the period 2006/09/04 to 2007/07/11 at Jaboticabal, SP. The air temperature measurements were similar between the Vaisala sensors and aspirated thermocouple psychrometer, but the relative humidity measurements were significantly different. The measurements obtained by the aspirated thermocouple psychrometer connected to CR10X micrologger were the most accurate. Using the programming and connection of a micro-fan to suck in the dry and moist bulbs of aspirated thermocouple psychrometer in microloggers models CR10X and CR23X, it is possible to obtain measurements of air temperature with good precision and accuracy, and measurements of air relative humidity with good precision, but accuracy is not always attainable due to the difficulties inherent to the physical processes that occur in the wet bulb, the skill in the use and maintenance of this equipment and the reservoir protection against radiative effects.
Resumo:
The factors that have influence on the energy consumption of a small air conditioning system that are worth mentioning are the efficiencies of the compressor, evaporator and condenser, the form that the refrigerant flow is controlled, the fan model used, and climatic conditions. Within the climate issue, an interesting factor is that the relative humidity when it comes to the effect that it causes, especially in the performance of the air condenser, which generally is not considered in the projects. This study aims to evaluate the influence of humidity on the coefficient of system performance (COP), seeking to quantify their influence when it happens. The tests were performed on a testing bench, mounted at the Laboratory for Energy Efficiency (LAMOTRIZ) UNESP-Campus Guaratinguetá. In the study, the wet bulb temperature was ranged, keeping the rotation of the scroll compressor with application of a frequency inverter in its best performance. The test bench is provided with a supervisory system of data collection that is also able to control all functions of the bench. In the results, there was a significant influence, particularly when comparing high humidity conditions with low humidity, noting that only over 65% relative humidity is that significant changes are observed in the COP of the system. © 2013 Elsevier Inc.
Resumo:
Pós-graduação em Geografia - FCT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)