713 resultados para Histone déacétylase
Resumo:
Release of cytochrome c from mitochondria is a major event during apoptosis. Released cytochrome c has been shown to activate caspase-dependent apoptotic signals. In this report, we provide evidence for a novel role of cytochrome c in caspase-independent nuclear apoptosis. We showed that cytochrome c, released from mitochondria upon apoptosis induction, gradually accumulates in the nucleus as evidenced by both immunofluorescence and subcellular fractionation. Parallel to nuclear accumulation of cytochrome c, acetylated histone H2A, but not unmodified H2A, was released from the nucleus to the cytoplasm. Addition of purified cytochrome c to isolated nuclei recapitulated the preferential release of acetylated, but not deacetylated, histone H2A. Cytochrome c was also found to induce chromatin condensation. These results suggest that the nuclear accumulation of cytochrome c may be directly involved in the remodeling of chromatin. Our results provide evidence of a novel role for cytochrome c in inducing nuclear apoptosis.
Resumo:
To capture the genomic profiles for histone modification, chromatin immunoprecipitation (ChIP) is combined with next generation sequencing, which is called ChIP-seq. However, enriched regions generated from the ChIP-seq data are only evaluated on the limited knowledge acquired from manually examining the relevant biological literature. This paper proposes a novel framework, which integrates multiple knowledge sources such as biological literature, Gene Ontology, and microarray data. In order to precisely analyze ChIP-seq data for histone modification, knowledge integration is based on a unified probabilistic model. The model is employed to re-rank the enriched regions generated from peak finding algorithms. Through filtering the reranked enriched regions using some predefined threshold, more reliable and precise results could be generated. The combination of the multiple knowledge sources with the peaking finding algorithm produces a new paradigm for ChIP-seq data analysis. © (2012) Trans Tech Publications, Switzerland.
Resumo:
Mesenchymal stem cells (MSCs) represent a promising cell population for cell therapy and regenerative medicine applications. However, how variations in glucose are perceived by MSC pool is still unclear. Since, glucose metabolism is cell type and tissue dependent, this must be considered when MSCs are derived from alternative sources such as the heart. The zinc finger transcription factor Egr-1 is an important early response gene, likely to play a key role in the glucose-induced response. Our aim was to investigate how short-term changes in in vitro glucose concentrations affect multipotent cardiac tissue-derived MSCs (cMSCs) in a mouse model of Egr-1 KO (Egr-1-/-). Results showed that loss of Egr-1 does not significantly influence cMSC proliferation. In contrast, responses to glucose variations were observed in wt but not in Egr-1 -/- cMSCs by clonogenic assay. Phenotype analysis by RT-PCR showed that cMSCs Egr-1-/- lost the ability to regulate the glucose transporters GLUT-1 and GLUT-4 and, as expected, the Egr-1 target genes VEGF, TGFβ-1, and p300. Acetylated protein levels of H3 histone were impaired in Egr-1-/- compared to wt cMSCs. We propose that Egr-1 acts as immediate glucose biological sensor in cMSCs after a short period of stimuli, likely inducing epigenetic modifications. © 2014 Daniela Bastianelli et al.
Resumo:
A two-step process of high ionic strength lysis of chicken erythrocyte cell nuclei followed by cation-exchange chromatography has separated at very high yield all the histone and HMGB (high-mobility group B) nuclear proteins, except the less-soluble histone tetramers. Surprisingly high yields of the nuclear immunophilin FKBP3 (FKBP25) and Hsp70 (heat-shock protein 70) co-fractionate with HMGB1 and HMGB3. Furthermore, these proteins can be separated by anion-exchange chromatography. The purified nuclear proteins retain their native, post-translational modification (PTM) marks, including those associated with chromatin-fibre remodelling. These marks are intimately associated with the control of the cell cycle. The methods herein are therefore of value for targeting these and other nuclear proteins for future proteomic studies in healthy and diseased cells. This journal is © 2012 The Royal Society of Chemistry.
Resumo:
The ageing process results from a complex interplay between genes and the environment that can precipitate an uncontrolled inflammation. Epigenetic changes are believed to provide a link between the environment and nutrition to gene expression by altering the activity of some histone-modifying protein. Epigenetic modifications of DNA and histone proteins have been proposed as important contributory mechanisms to the retention of metabolic memory over time. A thorough understanding of the posttranscriptional and epigenetic factors involved in both normal ageing and age-related disease may inform new strategies and approaches to diagnose, treat, or suppress many aspects of age-dependent frailty.
Resumo:
2000 Mathematics Subject Classification: 62P10, 92C40
Resumo:
In many vertebrate and invertebrate species mediators of innate immunity include antimicrobial peptides (AMPs) such as peptide fragments of histones and other proteins with previously ascribed different functions. Shark AMPs have not been described and this research examines the antibacterial activity of nurse shark (Ginglymostoma cirratum) peripheral blood leukocyte lysates. Screening of lysates prepared by homogenizing unstimulated peripheral blood leukocytes identified muramidase (lysozyme-like) and non-muramidase antibacterial activity. Lysates were tested for lysozyme using the lysoplate assays, and antibacterial (AB) activity was assayed for by a microdilution growth assay that was developed using Planococcus citreus as the target bacterium. Fractionation of crude lysates by ion exchange and affinity chromatography was followed by a combination of SDS-PAGE with LC/MS-MS and/or N-terminal sequence analysis of low molecular weight protein bands (<20 kDa). This yielded several peptides with amino acid sequence similarity to lysozyme, ubiquitin, hemoglobin, human histones H2A, H2B and H4 and to antibacterial histone fragments of the catfish and the Asian toad. Not all peptide sequences corresponded to peptides potentially antibacterial. The correlation of a specific protein band in active lysate fractions was accomplished by employing the acid-urea gel overlay assays in which AB activity was seen as zones of growth inhibition on a lawn of P. citreus at a position corresponding to that of the putative AB protein band. This study is the first to describe putative AMPs in the shark and their potential role in innate immunity.^
Resumo:
Breast cancer is a disease associated with excess exposures to estrogens. While the mode of cancer causation is unknown, others have shown that oxidative stress induced by prolonged exposure to estrogens mediates renal, liver, endometrial and mammary tumorigenesis though the mechanism(s) underling this process is unknown. In this study, we show that 4-hydroxyl 17β-estradiol (4-OHE2), a catechol metabolite of estrogen, induces mammary tumorigenesis in a redox dependent manner. We found that the mechanism of tumorigenesis involves redox activations of nuclear respiratory factor-1 (NRF1); a transcriptions factor associated with regulation of mitochondria biogenesis and oxidative phosphorylation (OXPHOS), as well as mediation of cell survival and growth of cells during periods of oxidative stress. Key findings from our study are as follows: (i) Prolonged treatments of normal mammary epithelial cells with 4-OHE2, increased the formation of intracellular reactive oxygen species (ROS). (ii) Estrogen-induced ROS activates redox sensitive transcription factors NRF1. (iii) 4-OHE2 through activation of serine-threonine kinase and histone acetyl transferase, phosphorylates and acetylate NRF1 respectively. (iv) Redox mediated epigenetic modifications of NRF1 facilitates mammary tumorigenesis and invasive phenotypes of breast cancer cells via modulations of genes involved in proliferation, growth and metastasis of exposed cells. (v) Animal engraftment of transformed clones formed invasive tumors. (vi) Treatment of cells or tumors with biological or chemical antioxidants, as well as silencing of NRF1 expressions, prevented 4-OHE2 induced mammary tumorigenesis and invasive phenotypes of MCF-10A cells. Based on these observations, we hypothesize that 4-OHE2 induced ROS epigenetically activate NRF1 through its phosphorylation and acylation. This, in turn, through NRF1-mediated transcriptional activation of the cell cycle genes, controls 4-OHE2 induced cell transformation and tumorigenesis.^
Resumo:
Wolbachia pipientis are bacterial endosymbionts carried by millions of invertebrate species, including ~40% of insect species and some filarial nematodes. In insects, basic Wolbachia research has potential applications in controlling vector borne disease. Conversely, Wolbachia of filarial nematodes are causative agents of neglected tropical diseases such as lymphatic filariasis and African river blindness. However, remarkably little is known about how Wolbachia interact with their hosts at the molecular level. Understanding this is important to inform the basis for symbiosis and help prevent human disease. I used a high-throughput proteomics approach to study how Drosophila host cells are modified by Wolbachia infection. This analysis identified 23 Drosophila proteins that significantly changed in amount as a result of Wolbachia infection. A subset of differentially abundant host proteins were consistent with Wolbachia-associated phenotypes reported previously. This study also provides the first ever discovery-based evidence for a Wolbachia-associated change in maternal germline histone loads, which has possible implications in Rescue of a common Wolbachia-induced reproductive manipulation known as Cytoplasmic Incompatibility.
Resumo:
The Amazon holds over half of the planet's remaining tropical forests and comprises the largest biodiversity in the world, accounting for approximately 60 % of the Brazilian territory. However, deforestation fires in the region causes serious problems to exposed human. The aim of this study was to evaluate the chemical compounds as well as the cellular and molecular effects after exposure to organic material extracted from particulate matter less than 10 µm (PM10) in the Amazon region. As for the chemical composition, n-alkanes analysis showed a prevalence of anthropogenic influence during the fires in the region. In addition, there was a predominance of monosaccharides from biomass burning markers. Also, the Polycyclic Aromatic Hydrocarbons (PAH) and their derivatives have also been identified in samples collected in the Amazon. By using the PAH concentrations was possible to calculate the BaP-equivalent and it was found that the dibenz(a) anthracene contributes with 83% to potential carcinogenic risk. As for the potential mutagenic risk, the benzo (a) pyrene is the HPA that has a major contribution in this analysis. It may be noted that the retene was the most abundant PAH. This compound was genotoxic and cause death by necrosis in the human lung cells. In biological tests, the data showed that organic PM10 is capable of causing genetic damage in both plant cells and in human lung cells. This damage cause an arrest in the G1 phase of the cell cycle exposed, increasing the expression of p53 and p21. Additionally, the PM10 caused cell death by apoptosis, increasing the foci of histone - H2AX. Given these results, it is important to emphasize the reduction and better control of biomass burning in the Amazon region thus improving the quality of health of the population being exposed. As clearly stated recently by the World Health Organization, the reduction of air pollution could save millions of lives annually.
Resumo:
The Rachycentron canadum species, commonly known as beijupirá or cobia is the only representative of Rachycentridae family which has been increasingly used in marine fish farming, in intensive cultivation. As advantageous features it has easy adaptation, prolific behavior, early growth in captivity and high commercial value. Additionally, specie of Lutjanidae family (Lutjanus synagris, Lutjanus jocu, Lutjanus analis, Lutjanus alexandrei and Ocyurus chrysurus) represents an important fisheries resource in all areas of its occurrence. In Brazil, the commercial exploitation of Lutjanidae which begun in the 60's and 80's, already has showed a decline in catch volumes. This fact suggests that the snappers must have a conservative management. Despite the economic potential, little is known about the genetic and cytogenetic characteristics of these species, especially with respect to repetitive DNA analysis, which represents the major part of the eukaryotes genome, playing important evolutionary roles in the fish genome. Cytogenetic data is increasingly being used in population studies and biotechnological purposes in fishes. The cytogenetical analyzes were performed using classical methods such as Giemsa staining, C-banding and Ag-NORs, fluorochromes base-specific staining (DAPI and MM) and physical mapping of repetitive sequences among which, telomeric sequences, transposons (Tol2), retrotransposons (Rex1 and Rex3), repetitive DNA (microsatellites and Cot-1) and transcriptionally active regions of the 18S and 5S ribosomal genes and histone (H3 and H2BA) by in situ hybridization with fluorescent probes (FISH). The chromosomal patterns obtained contributed to the organization of repetitive sequences in the genome of the species, as well as karyotypical differentiation. Unusual patterns of histone sequences expansion depict the first occurrence in marine fishes. The obtained data provided subsides to the genetic knowledge of the important fisheries resource represented by the species here analyzed, seeking the marine pisciculture improvement.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Sex differences occur in most non-communicable diseases, including metabolic diseases, hypertension, cardiovascular disease, psychiatric and neurological disorders and cancer. In many cases, the susceptibility to these diseases begins early in development. The observed differences between the sexes may result from genetic and hormonal differences and from differences in responses to and interactions with environmental factors, including infection, diet, drugs and stress. The placenta plays a key role in fetal growth and development and, as such, affects the fetal programming underlying subsequent adult health and accounts, in part for the developmental origin of health and disease (DOHaD). There is accumulating evidence to demonstrate the sex-specific relationships between diverse environmental influences on placental functions and the risk of disease later in life. As one of the few tissues easily collectable in humans, this organ may therefore be seen as an ideal system for studying how male and female placenta sense nutritional and other stresses, such as endocrine disruptors. Sex-specific regulatory pathways controlling sexually dimorphic characteristics in the various organs and the consequences of lifelong differences in sex hormone expression largely account for such responses. However, sex-specific changes in epigenetic marks are generated early after fertilization, thus before adrenal and gonad differentiation in the absence of sex hormones and in response to environmental conditions. Given the abundance of X-linked genes involved in placentogenesis, and the early unequal gene expression by the sex chromosomes between males and females, the role of X- and Y-chromosome-linked genes, and especially those involved in the peculiar placenta-specific epigenetics processes, giving rise to the unusual placenta epigenetic landscapes deserve particular attention. However, even with recent developments in this field, we still know little about the mechanisms underlying the early sex-specific epigenetic marks resulting in sex-biased gene expression of pathways and networks. As a critical messenger between the maternal environment and the fetus, the placenta may play a key role not only in buffering environmental effects transmitted by the mother but also in expressing and modulating effects due to preconceptional exposure of both the mother and the father to stressful conditions.
Resumo:
Histone deacetylases (HDACs) have been shown to play key roles in tumorigenesis, and
have been validated as effective enzyme target for cancer treatment. Largazole, a marine natural
product isolated from the cyanobacterium Symploca, is an extremely potent HDAC inhibitor that
has been shown to possess high differential cytotoxicity towards cancer cells along with excellent
HDAC class-selectivity. However, improvements can be made in the isoform-selectivity and
pharmacokinetic properties of largazole.
In attempts to make these improvements and furnish a more efficient biochemical probe
as well as a potential therapeutic, several largazole analogues have been designed, synthesized,
and tested for their biological activity. Three different types of analogues were prepared. First,
different chemical functionalities were introduced at the C2 position to probe the class Iselectivity profile of largazole. Additionally, docking studies led to the design of a potential
HDAC8-selective analogue. Secondly, the thiol moiety in largazole was replaced with a wide
variety of othe zinc-binding group in order to probe the effect of Zn2+ affinity on HDAC
inhibition. Lastly, three disulfide analogues of largazole were prepared in order to utilize a
different prodrug strategy to modulate the pharmacokinetic properties of largazole.
Through these analogues it was shown that C2 position can be modified significantly
without a major loss in activity while also eliciting minimal changes in isoform-selectivity. While
the Zn2+-binding group plays a major role in HDAC inhibition, it was also shown that the thiol
can be replaced by other functionalities while still retaining inhibitory activity. Lastly, the use of
a disulfide prodrug strategy was shown to affect pharmacokinetic properties resulting in varying
functional responses in vitro and in vivo.
v
Largazole is already an impressive HDAC inhibitor that shows incredible promise.
However, in order to further develop this natural product into an anti-cancer therapeutic as well as
a chemical probe, improvements in the areas of pharmacokinetics as well as isoform-selectivity
are required. Through these studies we plan on building upon existing structure–activity
relationships to further our understanding of largazole’s mechanism of inhibition so that we may
improve these properties and ultimately develop largazole into an efficient HDAC inhibitor that
may be used as an anti-cancer therapeutic as well as a chemical probe for the studying of
biochemical systems.