972 resultados para High-k Aluminum Oxide


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertation submitted to obtain the phD degree in Biochemistry, specialty in Physical- Biochemistry, by the Faculdade de Ciências e Tecnologia from the Universidade Nova de Lisboa

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Biochemistry, 2011, 50 (20), pp 4251–4262 DOI: 10.1021/bi101605p

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protein Sci. 2009 Mar;18(3):619-28. doi: 10.1002/pro.69.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RESUMO:Aterosclerose é uma das principais causas de morbilidade e mortalidade no mundo ocidental. É responsável, direta ou indiretamente, pela maior percentagem de gastos com a saúde na maioria dos países europeus. A “teoria lipídica” da aterosclerose, que se baseia na dislipidemia como causa primária para a doença vascular tem algumas implicações práticas importantes: permite a definição de linhas de orientação e protocolos simples e ainda estabelece alvos terapêuticos que podem ser atingidos na maior parte dos casos com a atual intervenção farmacológica. A associação da aterosclerose com o sistema imunológico (a “teoria imunológica”), forneceu por sua vez novas formas de explorar os mecanismos envolvidos e abriu novas perspetivas para um conhecimento mais completo da doença. No entanto, levanta dificuldades evidentes no que diz respeito às possibilidades terapêuticas. De todos os intervenientes no processo aterosclerótico (bioquímicos, imunológicos e anatómicos), as lipoproteínas de elevada densidade (HDL) são atualmente reconhecidas como um dos fatores mais importantes na aterogénese. Isto é baseado no reconhecimento das múltiplas propriedades anti-aterogénicas das HDL como por exemplo: a anti-oxidante, a anti-inflamatória e a antitrombótica, bem como o seu importante papel na melhoraria da função endotelial. Atualmente, é consensual que as funções anti-aterogénicas das HDL vão além do seu papel no transporte reverso do colesterol (RCT) e a importância das HDL no processo aterosclerótico baseia-se não apenas no seu papel protetor impedindo a formação da placa de ateroma, mas também na estabilização destas, prevenindo a sua ruptura e, consequentemente o evento trombótico. Como fundamentais no processo aterosclerótico estão reconhecidos dois principais conjuntos de eventos: um caracterizado por alterações no metabolismo das lipoproteínas que resultam em lipoproteínas pró-inflamatórias e pró-oxidantes que interagem com os componentes celulares da parede arterial e que conduzem à formação da placa de ateroma; o outro evento é a resposta imunológica desencadeada contra um novo conjunto de antigénios que por sua vez leva à produção de citoquinas pró-inflamatórias. Dada a complexidade da HDL e das suas múltiplas funções estas lipoproteínas tornaram-se um potencial alvo para a resposta auto-imune, e cujas consequências podem explicar algumas das associações identificados em estudos clínicos e epidemiológicos. Contudo esta interação entre o sistema imunológico e HDL nunca foi exaustivamente estudada. Portanto, pomos a hipótese de que em condições oxidativas e pró-inflamatórias, um aumento do antigénio (HDL) conduz a um consequente acréscimo na produção de anticorpos anti-HDL (aHDL) responsáveis pela alteração quantitativa e / ou qualitativa das HDL. O conceito de que estes anticorpos podem contribuir tanto para a evolução a longo prazo do processo aterosclerótico, como para o desencadeamento de eventos clínicos pode também explicar a heterogeneidade encontrada em cada doente e nos grandes estudos clínicos, no que diz respeito aos fatores de risco e outcomes clínicos. Para além disso, a confirmação desta hipótese pode permitir explicar porque é que as intervenções terapêuticas atualmente em desenvolvimento para aumentar os níveis de HDL, não conseguem mostrar a tão esperada redução do risco vascular. O objetivo geral desta tese foi identificar e caracterizar a resposta humoral contra os componentes da HDL, e avaliar possíveis mecanismos que possam contribuir para a modificação das propriedades anti-aterogénicas das HDL. Para alcançar este objetivo investigou-se: 1) A presença de anticorpos aHDL em doentes com lúpus eritematoso sistémico (SLE) e em doentes com manifestações clínicas de aterosclerose, como os doentes com doença arterial coronária (CAD), acidente vascular cerebral isquémico (IS) e diabetes tipo 2; 2) Os principais alvos antigénicos dentro do complexo das HDL e a associação entre os títulos de anticorpos aHDL e diferentes características clínicas destas doenças; 3) As modificações das funções normais associadas às HDL, em particular da função anti-oxidante e anti-inflamatória; 4) A atividade biológica dos anticorpos aHDL isolados do soro de doentes através de um conjunto de experiências in vitro de inibição da atividade da paraoxonase 1 (PON1) e da expressão de moléculas de adesão em culturas de células endoteliais. Para tal foi necessário estabelecer um método de isolamento dos anticorpos. Os anticorpos aHDL isolados do soro de doentes foram utilizados de forma a identificar as potenciais alterações dos sistemas celulares utilizados; 5) O efeito de fármacos usados no tratamento das dislipidemias, em particular o ácido nicotínico e as estatinas, na variação dos títulos de anticorpos aHDL através de ensaios clínicos randomizados, controlados com placebo e em dupla ocultação. Os métodos utilizados neste trabalho incluíram: técnicas imunológicas (como por exemplo, enzyme-linked immunoabsorbent assay - ELISA, ensaio imunoturbidimetrico e cromatografia de imuno-afinidade) técnicas bioquímicas (tais como a quantificação de atividade enzimática por espectrofotometria e por luminescência), experiências com cultura de células e citometria de fluxo. Os nossos resultados mostram que: 1) A presença de anticorpos aHDL, e mais especificamente anticorpos contra alguns do seus principais componentes como a apolipoproteína A-I (ApoA-I, principal apolipoproteína presente nas HDL) e a PON1 (o enzima que mais contribui para a propriedade anti-oxidante das HDL), quer em doentes com doenças auto-imunes, como o SLE, quer em doentes com manifestações clínicas de aterosclerose, como CAD, IS e diabetes tipo 2. Os doentes apresentaram títulos de anticorpos IgG aHDL, aApoA-I e aPON1 significativamente mais elevados do que controlos saudáveis com a mesma idade e sexo. 2) A correlação positiva estatisticamente significativa entre os títulos de aHDL e aApoA-I e aPON1 sugere que estes sejam dois dos principais alvos antigénicos dentro do complexo das HDL. Os anticorpos encontrados nestes doentes estão associados com a diminuição da atividade da PON1 e a uma redução da capacidade anti-oxidante total (TAC) do soro, um aumento dos biomarcadores de disfunção endotelial (como por exemplo dos metabolitos do óxido nítrico - NO2- e NO3-, as moléculas de adesão vascular e intracelular - VCAM-1 e ICAM-1 e os níveis de 3-nitrotirosina). Nos doentes com SLE os títulos destes estão associados a um aumento do dano cardiovascular e à atividade global da doença avaliados pelas escalas SLICC/ACR DI e BILAG score, respetivamente. Enquanto que nos doentes com diabetes tipo 2 estes anticorpos estão associados com um aumento dos níveis de glicemia em jejum (FGP) e hemoglobina glicada (HbA1c). 3) Após se ter estabelecido um método de isolamento dos anticorpos que permite isolar quantidades significativas de anticorpos do soro de doentes sem perder a sua especificidade, foi identificada a capacidade dos anticorpos isolados do soro de doentes inibirem de uma forma dependente da concentração a atividade da PON1 até um máximo de 70% no caso dos doentes com SLE e ente 7-52% no caso dos anticorpos isolados de doentes com CAD e IS. 4) O efeito anti-inflamatório das HDL na inibição da produção de VCAM-1 induzida por citoquinas (como o TNF-) foi revertido em mais de 80% pelos anticorpos aHDL isolados do soro de doentes. 5) A angiogenesis induzida por HDL através do aumento do fator de crescimento do endotélio vascular (VEGF) foi anulada em 65% pelos anticorpos aHDL isolados do soro de doentes. 6) Os atuais agentes farmacológicos disponíveis para aumentar as concentrações de HDL-C estão associados a um aumento dos títulos de anticorpos.-------- ABSTRACTAtherosclerosis is the major cause of morbidity and mortality in the western world. It is also responsible, directly or indirectly, for the highest percentage of health costs in most European countries. Despite the use of new technologies for the diagnosis of vascular disease and regardless of the major advances in treatment, the atherosclerosis-related clinical burden is still raising. The “lipid theory” of atherogenesis, which identifies dyslipidemia as the primary cause of this vascular disease has some important practical implications: it allows the definition of simple guidelines and establishes therapeutic targets which can be generally met with current pharmacologic intervention. The association between atherosclerosis an the immune system (the immune concept) has in turn provided new ways of exploring the mechanisms involved in this condition and has opened new perspectives in the understanding of the disease. However, it raises obvious difficulties when it comes to treatment options. Of all the players (biochemical, immunological and anatomical) involved in this matter, high-density lipoproteins (HDL) are currently recognised as one of the most important factors in atherogenesis. This is based on the recognition of HDL's multiple anti-atherogenic properties: anti-oxidant, anti-inflammatory and antithrombotic, as well as its capacity to improve endothelial function. Nowadays, it is widely recognized that the anti-atherogenic functions of HDL go beyond reverse cholesterol transport (RCT), and the importance of HDL is based not just on its ability to reduce atheroma formation but also on its ability to stabilise plaques, therefore preventing their rupture and ultimately thrombosis. Two main set of events have been recognised as fundamental in atherogenesis: one, characterized by lipoprotein metabolism alterations, resulting in pro-inflammatory and pro-oxidative lipoproteins, which interact with the normal cellular elements of the arterial wall leading to atheroma formation; the other, the immune cellular response towards new sets of antigens which lead to the production of pro-inflammatory cytokines. Given to HDL complexity and multiple functions this lipoprotein has became a potential target for an auto-immune response, the consequences of which may explain some of the association identified in epidemiological and clinical studies, though the interaction between the immune system and HDL has never been thoroughly addressed. Therefore, we hypothesized that under oxidative and pro-inflammatory conditions, the increase in the antigen (HDL) would lead to a consequent increase in the production of anti-HDL (aHDL) antibodies be responsible for quantitative and/or qualitative changes of HDL. The concept that these antibodies may contribute either to the long-term evolution of atherosclerosis or to the triggering of clinical events may also explain the heterogeneity found in individual patients and in large cohorts regarding risk factors and clinical outcomes. Moreover this may be a major breakthrough in understanding why therapeutic interventions that increase HDL levels, failed to show the anticipated reduction in vascular risk. The overall aims of this thesis were to identified and characterize the humoral response towards HDL components and to evaluate the possible mechanisms that may contribute to the modifications of the anti-atherogenic properties of HDL. To achieve this objective we investigated: 1) the presence of aHDL antibodies in patients with systemic lupus erythematosus (SLE) and in patients with atherosclerosis-related clinical events, such as coronary artery disease (CAD), ischemic stroke (IS) and type 2 diabetes; 2) the association between the titres of aHDL antibodies and different clinical features of these diseases; 3) the modifications of the anti-atherogenic properties of HDL; 4) the biologic effect of aHDL antibodies isolated from serum of patients on the anti-oxidant and anti-inflammatory properties of HDL; 5) the effect of different pharmacologic treatments for dyslipidemia on the prevalence and activity of aHDL antibodies. The methodologies used in this work included immunologic-related techniques (e.g. enzyme-linked immunoabsorbent assay – ELISA, immunoturbidimetric immunoassay and immunoaffinity chromatography), biochemical techniques (enzymatic assays with quantification by spectrophotometry and luminescence methods), cell culture experiments and flow cytometry. Our results indicate that: 1) The titres of IgG aHDL, anti-apolipoprotein A-I (aApoA-I) and anti-paraoxonase 1 (aPON1) antibodies were higher in patients with SLE, CAD, IS and type 2 diabetes when compared with age and sex matched healthy controls. 2) The antibodies found in these patients were associated with decreased PON1 activity, (the enzyme responsible for most of the anti-oxidant effect of HDL), reduced total anti-oxidant capacity (TAC) of serum and increased biomarkers of endothelial dysfunction (nitric oxide metabolites, adhesion molecules, nitrotyrosine). In patients with SLE the antibody titres were associated with an increase in disease-related cardiovascular damage and activity whereas in patients with type 2 diabetes they were directly related with the fasting glucose plasma (FGP) levels and the glycosylated haemoglobin (HbA1c). 3) The antibodies isolated from serum of our patients, directly inhibited HDL-associated PON1 activity in a dose dependent way ranging from 7 to 52%. 4) The anti-inflammatory effect of HDL, measured by the percentage of inhibition of the cytokine-induced production of vascular adhesion molecules (VCAM-1), was reduced in more than 80% by aHDL antibodies isolated from our patients. 5) The HDL-induced angiogenesis by increasing vascular endothelial growth factor (VEGF) levels was abrogated in 65% by the antibodies isolated from serum of patients. 6) The current available pharmacologic agents for increasing HDL-C concentrations were associated with an increase in the titres of IgG aApoA-I antibodies. This increase was higher in the extended release niacin when compared to statins probably due to their dampening effect on oxidative stress. In conclusion, aHDL antibodies are present in different pathologic conditions. aHDL antibodies represent a family of self-reacting immunoglobulins, of which ApoA-I and PON1 might be the most relevant targets. These antibodies are biologically active, interfering with the HDL anti-oxidant and anti-inflammatory properties and, consequently, with the atherosclerotic process. The pathogenic potential of these antibodies may lead to the identification of a new biomarker for vascular disease, whilst presenting itself as a novel target for a different treatment approach which may redefine the treatment strategies and clinical trials design for HDL interventions in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A thermal Energy Storage Unit (ESU) could be used to attenuate inherent temperature fluctuations of a cold finger, either from a cryocooler working or due to sudden income heat bursts. An ESU directly coupled to the cold source acts as a thermal buffer temporarily increasing its cooling capacity and providing a better thermal stability of the cold finger (“Power Booster mode”). The energy storage units presented here use an enthalpy reservoir based on the high latent heat of the liquid-vapour transition of neon in the temperature range 38 - 44 K to store up to 900 J, and that uses a 6 liters expansion volume at RT in order to work as a closed system. Experimental results in the power booster mode will be described: in this case, the liquid neon cell was directly coupled to the cold finger of the working cryocooler, its volume (12 cm3) allowing it to store 450 J at around 40 K. 10 W heat bursts were applied, leading to liquid evaporation, with quite reduced temperature changes. The liquid neon reservoir can also work as a temporary cold source to be used after stopping the cryocooler, allowing for a vibration-free environment. In this case the enthalpy reservoir implemented (24 cm3) was linked to the cryocooler cold finger through a gas gap heat switch for thermal coupling/decoupling of the cold finger. We will show that, by controlling the enthalpy reservoir’s pressure, 900 J can be stored at a constant temperature of 40 K as in a triple-point ESU.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing demand for materials and devices with new functionalities led to the increased inter-est in the field of nanomaterials and nanotechnologies. Nanoparticles, not only present a reduced size as well as high reactivity, which allows the development of electronic and electrochemical devices with exclusive properties, when compared with thin films. This dissertation aims to explore the development of several nanostructured metal oxides by sol-vothermal synthesis and its application in different electrochemical devices. Within this broad theme, this study has a specific number of objectives: a) research of the influence of the synthesis parameters to the structure and morphology of the nanoparticles; b) improvement of the perfor-mance of the electrochromic devices with the application of the nanoparticles as electrode; c) application of the nanoparticles as probes to sensing devices; and d) production of solution-pro-cessed transistors with a nanostructured metal oxide semiconductor. Regarding the results, several conclusions can be exposed. Solvothermal synthesis shows to be a very versatile method to control the growth and morphology of the nanoparticles. The electrochromic device performance is influenced by the different structures and morphologies of WO3 nanoparticles, mainly due to the surface area and conductivity of the materials. The dep-osition of the electrochromic layer by inkjet printing allows the patterning of the electrodes without wasting material and without any additional steps. Nanostructured WO3 probes were produced by electrodeposition and drop casting and applied as pH sensor and biosensor, respectively. The good performance and sensitivity of the devices is explained by the high number of electrochemical reactions occurring at the surface of the na-noparticles. GIZO nanoparticles were deposited by spin coating and used in electrolyte-gated transistors, which promotes a good interface between the semiconductor and the dielectric. The produced transistors work at low potential and with improved ON-OFF current ratio, up to 6 orders of mag-nitude. To summarize, the low temperatures used in the production of the devices are compatible with flexible substrates and additionally, the low cost of the techniques involved can be adapted for disposable devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Peak and trough serum concentrations of vancomycin were determined in term newborn infants with confirmed or suspected Staphylococcus sp sepsis by high performance liquid chromatography and flourescence polarization immunoassay. OBJECTIVE: To statistically compare the results of the high performance liquid chromatography and flourescence polarization immunoassay techniques for measuring serum vancomycin concentrations. METHODS: Eighteen peak and 20 trough serum samples were assayed for vancomycin concentrations using high performance liquid chromatography and flourescence polarization immunoassay from October 1995 to October 1997. RESULTS: The linear correlation coefficients for high performance liquid chromatography and flourescence polarization immunoassay were 0.27 (peak, P = 0.110) and 0.26 (trough, P = 0.1045) respectively, which were not statistically significant. CONCLUSION: There was wide variation in serum vancomycin concentrations determined by high performance liquid chromatography as compared with those determined by flourescence polarization immunoassay. There was no recognizable pattern in the variability; in an apparently random fashion, the high performance liquid chromatography measurement was sometimes substantially higher than the flourescence polarization immunoassay measurement, and at other times it was substantially lower.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transparent conducting oxides (TCOs) have been largely used in the optoelectronic industry due to their singular combination of low electrical resistivity and high optical transmittance. They are usually deposited by magnetron sputtering systems being applied in several devices, specifically thin film solar cells (TFSCs). Sputtering targets are crucial components of the sputtering process, with many of the sputtered films properties dependent on the targets characteristics. The present thesis focuses on the development of high quality conductive Al-doped ZnO (AZO) ceramic sputtering targets based on nanostructured powders produced by emulsion detonation synthesis method (EDSM), and their application as a TCO. In this sense, the influence of several processing parameters was investigated from the targets raw-materials synthesis to the application of sputtered films in optoelectronic devices. The optimized manufactured AZO targets present a final density above 99 % with controlled grain size, an homogeneous microstructure with a well dispersed ZnAl2O4 spinel phase, and electrical resistivities of ~4 × 10-4 Ωcm independently on the Al-doping level among 0.5 and 2.0 wt. % Al2O3. Sintering conditions proved to have a great influence on the properties of the targets and their performance as a sputtering target. It was demonstrated that both deposition process and final properties of the films are related with the targets characteristics, which in turn depends on the initial powder properties. In parallel, the influence of several deposition parameters in the film´s properties sputtered from these targets was investigated. The sputtered AZO TCOs showed electrical properties at room temperature that are superior to simple oxides and comparable to a reference TCO – indium tin oxide (ITO), namely low electrical resistivity of 5.45 × 10-4 Ωcm, high carrier mobility (29.4 cm2V-1s-1), and high charge carrier concentration (3.97 × 1020 cm-3), and also average transmittance in the visible region > 80 %. These superior properties allowed their successful application in different optoelectronic devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes a search for high-mass resonances decaying to a pair of photons using a sample of 20.3  fb−1 of pp collisions at s√=8  TeV recorded with the ATLAS detector at the Large Hadron Collider. The data are found to be in agreement with the Standard Model prediction, and limits are reported in the framework of the Randall-Sundrum model. This theory leads to the prediction of graviton states, the lightest of which could be observed at the Large Hadron Collider. A lower limit of 2.66 (1.41) TeV at 95% confidence level is set on the mass of the lightest graviton for couplings of k/M¯¯¯¯Pl=0.1 (0.01).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of polymer based magnetoelectric materials for sensing and actuation applications has been the subject of increasing scientific and technological interest. One of the drawbacks to be overcome in this field is to increase the temperature range of application above 100 ºC. In this way, a nanocomposite material composed by a mixture of two aromatic diamines, 1,3-Bis-2-cyano-3-(3 aminophenoxy)phenoxybenzene (diamine 2CN) and 1,3-Bis(3-aminophenoxy)benzene (diamine 0CN) and CoFe2O4 (CFO) nanoparticles was designed, fabricated and successfully tested for high temperature magnetoelectric applications. Results revealed that CFO nanoparticles are well distributed within the 0CN2CN polymer matrix and that the addition of CFO nanoparticles does not significantly alter the polyimides structure. The magnetization response of the composite is determined by the CFO nanoparticle content. The piezoelectric response of the 0CN2CN polymer matrix (≈11 pC.N-1) and the maximum α33 value (0.8mV.cm-1.Oe-1) are stable over time and decrease only when the composite is subjected to temperatures above 130 ºC. Strategies to further improve the ME response are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stents are rigid and perforated tubular structures, which are inserted into blood vessels in order to prevent or inhibit the constriction of blood flow, restoring the normal blood flow, when blood vessels are clogged, being used in 70% of angioplasties. These medical devices assume great importance in the treatment of cardiovascular diseases (CVD) which are the leading cause of death worldwide. In the European Union CVD account for 40% of deaths and assume an estimated annual cost of 196 billion euros[1]. Stents must possess certain requirements, in order to, adequately, perform its function, such as biocompatibility (so that its use does not c ause damage on the health of its user), mechanical strength, radiopacity (so that it is easy to view), longitudinal flexibility, ease of handling, corrosion resistance and having high strength and high radial expansion ability to recover. Stents can be made of different materials, but metals, particularly stainless steel, are the most common. However, metallic stents present several dRawbacks such as corrosion and restenosis, leading to health complications for the patient, or even death. In order to minimize these disadvantages, new materials, like fibrous materials, have been used [2]. Monofilaments present high potential for stents development because, in addition to its biocompatibility, these materials allow the application of various surface treatments, such as antibacterial coatings. Furthermore, monofilament exhibit excellent mechanical properties, like greater stiffness and good results when subjected to compression, tensile and bending forces, since these forces will be directly supported by the monofilament [3]. To minimize the reaction of the human body and Limit the adhesion of microorganisms to the stent surface, some coatings have been developed, including the use of novel metals with antimicrobial properties, like silver. The main objective of this study was the development of fibrous stents, incorporation of silver oxide nanocoating. For the development of the stent, polyester monofilaments with 0.27mm of diameter were used in braiding technology, with a mandrel diameter of 6mm and a braiding angle of 35⁰. The mechanical behaviour of the stent were evaluated by mechanical testing under longitudinal and radial compression, bending. The results of compressive strength tests are according with value from literature: 1.13 to 2.9 N for radial compression and 0. 16-5.28N to longitudinal compression. From literature is also possible to verify that stents must present 75% of unchanged diameter during the bending test and must possess a porosity between 70% and 80% [4]. The produced polyester stent presents values of 1.29N for radial compression, 0.23N for longitudinal compression, 80% of porosity and 85.5% of unchanged diameter, during bending tests. For the antibacterial functionalization, silver oxide nanocoatings were prepared, through reactive magnetron g, with an Ag target in an Ar +O2 atmosphere. In order to evaluate the nanostructure and morphology of the coatings, d ifferent technique s like X-ray diffraction (XRD), scanning electron microscopy (SEM) and and X- ray photoelectron spectroscopy (XPS were used. From the analyses of XRD it is possible to verify that the peaks corresponds to planes of Ag2 O and MATERIAIS 2015 Porto, 21-23 June, 2015 characterize a cubic phase. The presence of Ag2 O is corroborated by XPS spectrum, where it is possible to observe silver, not only, in oxide state, but a lso in mettalic state, and it is possible to verify the presence of silver clusters, confirmed by SEM analysis. Films’ roughness and topography, parameters influencing the wettability of the surface and microorganism adhesion, were measured by Atomic Force Microscopy (AFM), and it was observed that the roughness is very low (under 10 nm). Coatings’ hydrophobicity and surface tension parameters were determined by contact angle measurement, and it was verified the hydrophobic behavior of the coatings. For antibacterial tests were used Staphylococcus epidermidis strain (IE186) and Staphylococcus aureus(ATCC 6538), and halo inhibition zone tests were realized. Ag+release rates were studied by means of inductively coupled plasma mass spectrometry (ICP -MS). The obtained results suggest that silver oxide coatings do not modify significantly surface properties of the substrate, like hydrophobicity and roughness, and present antimicrobial properties for both bacteria used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

CdS nanoparticles (NPs) were synthesized using colloidal methods and incorporated within a diureasil hybrid matrix. The surface capping of the CdS NPs by 3-mercaptopropyltrimethoxysilane (MPTMS) and 3-aminopropyltrimethoxysilane (APTMS) organic ligands during the incorporation of the NPs within the hybrid matrix has been investigated. The matrix is based on poly(ethylene oxide)/poly(propylene oxide) chains grafted to a siliceous skeleton through urea bonds and was produced by sol–gel process. Both alkaline and acidic catalysis of the sol–gel reaction were used to evaluate the effect of each organic ligand on the optical properties of the CdS NPs. The hybrid materials were characterized by absorption, steady-state and time-resolved photoluminescence spectroscopy and High Resolution Transmission Electron Microscopy (HR-TEM). The preservation of the optical properties of the CdS NPs within the diureasil hybrids was dependent on the experimental conditions used. Both organic ligands (APTMS and MPTMS) demonstrated to be crucial in avoiding the increase of size distribution and clustering of the NPs within the hybrid matrix. The use of organic ligands was also shown to influence the level of interaction between the hybrid host and the CdS NPs. The CdS NPs showed large Stokes shifts and long average lifetimes, both in colloidal solution and in the xerogels, due to the origin of the PL emission in surface states. The CdS NPs capped with MPTMS have lower PL lifetimes compared to the other xerogel samples but still larger than the CdS NPs in the original colloidal solution. An increase in PL lifetimes of the NPs after their incorporation within the hybrid matrix is related to interaction between the NPs and the hybrid host matrix.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The spatial distribution of forest biomass in the Amazon is heterogeneous with a temporal and spatial variation, especially in relation to the different vegetation types of this biome. Biomass estimated in this region varies significantly depending on the applied approach and the data set used for modeling it. In this context, this study aimed to evaluate three different geostatistical techniques to estimate the spatial distribution of aboveground biomass (AGB). The selected techniques were: 1) ordinary least-squares regression (OLS), 2) geographically weighted regression (GWR) and, 3) geographically weighted regression - kriging (GWR-K). These techniques were applied to the same field dataset, using the same environmental variables derived from cartographic information and high-resolution remote sensing data (RapidEye). This study was developed in the Amazon rainforest from Sucumbíos - Ecuador. The results of this study showed that the GWR-K, a hybrid technique, provided statistically satisfactory estimates with the lowest prediction error compared to the other two techniques. Furthermore, we observed that 75% of the AGB was explained by the combination of remote sensing data and environmental variables, where the forest types are the most important variable for estimating AGB. It should be noted that while the use of high-resolution images significantly improves the estimation of the spatial distribution of AGB, the processing of this information requires high computational demand.