936 resultados para High concentration
Nitrification of high strength ammonia wastewtaer treatment - process selection is the major factor.
Resumo:
Biological nitrogen removal via the nitrite pathway in wastewater treatment is very important in Saving the cost of aeration and as an electron donor for denitrification. Wastewater nitrification and nitrite accumulation were carried out in a biofilm airlift reactor with autotrophic nitrifying biofilm. The biofilm reactor showed almost complete nitrification and most of the oxidized ammonium was present as nitrite at the ammonium load of 1.5 to 3.5 kg N/m3.d. Nitrite accumulation was stably achieved by the selective inhibition of nitrite oxidizers with free ammonia and dissolved oxygen limitation. Stable 100% conversion to nitrite could also be achieved even under the absence of free ammonia inhibition on nitrite oxidizers. Batch ammonium oxidation and nitrite oxidation with nitrite accumulating nitrifying biofilm showed that nitrite Oxidation was completely inhibited when free ammonia is higher than 0.2 mg N/L. However, nitrite oxidation activity was recovered as soon as the free ammonia concentration was below the threshold level when dissolved oxygen concentration was not the limiting factor. Fluorescence in situ hybridization analysis of cryosectioned nitrite accumulating nitrifying biofilm showed that the β-subclass of Proteobacteria, where ammonia oxidizers belong, was distributed outside the biofilm whereas the α-subclass of Proteobacteria, where nitrite oxidizers belong, was found mainly in the inner part of the biofilm. It is likely that dissolved oxygen deficiency or limitation in the inner part of the nitrifying biofilm, where nitrite oxidizers exist, is responsible for the complete shut down of the nitrite oxidizers activity under the absence of free ammonia inhibition.
Resumo:
Genetic improvement of common bean nutritional quality has advantages in marketing and can contribute to society as a food source. The objective of this study was to evaluate the genetic variability for grain yield, calcium and iron concentrations in grains of inbred common bean lines obtained by different breeding methods. For this, 136 F7 inbred lines were obtained using the Pedigree method and 136 F7 inbred lines were obtained using the Single-Seed Descent (SSD) method. The lines showed genetic variability for grain yield, and concentrations of calcium and iron independently of the method of advancing segregating populations. The Pedigree method allows obtaining a greater number of lines with high grain yield. Selection using the SSD method allows the identification of a larger number of lines with high concentrations of calcium and iron in grains. Weak negative correlations were found between grain yield and calcium concentration (r = -0.0994) and grain yield and iron concentration (r = -0.3926). Several lines show genetic superiority for grain yield and concentrations of calcium and iron in grains and their selection can result in new common bean cultivars with high nutritional quality.
Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration
Resumo:
Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.
Resumo:
The most common causes of anemia are micronutrient deficiencies, but other factors may influence namely inflammation, parasitic infections and inherited disorders. One strategy to combat micronutrient deficiencies is supplementation, yet, in zones with high prevalence of Schistosomiasis or Soil Transmitted Helminthes (STH), supplementation could be not sufficient. The aim of this study was to evaluate the effects of deworming, on hemoglobin concentration, in children from 2 to 15 years, from Bengo.
Resumo:
Gamma radiations measurements were carried out in the vicinity of a coal-fired power plant located in the southwest coastline of Portugal. Two different gamma detectors were used to assess the environmental radiation within a circular area of 20 km centred in the coal plant: a scintillometer (SPP2 NF, Saphymo) and a high purity germanium detector (HPGe, Canberra). Fifty urban and suburban measurements locations were established within the defined area and two measurements campaigns were carried out. The results of the total gamma radiation ranged from 20.83 to 98.33 counts per second (c.p.s.) for both measurement campaigns and outdoor doses rates ranged from 77.65 to 366.51 Gy/h. Natural emitting nuclides from the U-238 and Th-232 decay series were identified as well as the natural emitting nuclide K-40. The radionuclide concentration from the uranium and thorium series determined by gamma spectrometry ranged from 0.93 to 73.68 Bq/kg, while for K-40 the concentration ranged from 84.14 to 904.38 Bq/kg. The obtained results were used primarily to define the variability in measured environmental radiation and to determine the coal plant’s influence in the measured radiation levels. The highest values were measured at two locations near the power plant and at locations between the distance of 6 and 20 km away from the stacks, mainly in the prevailing wind direction. The results showed an increase or at least an influence from the coal-fired plant operations, both qualitatively and quantitatively.
Resumo:
The intensification of agricultural productivity is an important challenge worldwide. However, environmental stressors can provide challenges to this intensification. The progressive occurrence of the cyanotoxins cylindrospermopsin (CYN) and microcystin-LR (MC-LR) as a potential consequence of eutrophication and climate change is of increasing concern in the agricultural sector because it has been reported that these cyanotoxins exert harmful effects in crop plants. A proteomic-based approach has been shown to be a suitable tool for the detection and identification of the primary responses of organisms exposed to cyanotoxins. The aim of this study was to compare the leaf-proteome profiles of lettuce plants exposed to environmentally relevant concentrations of CYN and a MC-LR/CYN mixture. Lettuce plants were exposed to 1, 10, and 100 lg/l CYN and a MC-LR/CYN mixture for five days. The proteins of lettuce leaves were separated by twodimensional electrophoresis (2-DE), and those that were differentially abundant were then identified by matrix-assisted laser desorption/ionization time of flight-mass spectrometry (MALDI-TOF/TOF MS). The biological functions of the proteins that were most represented in both experiments were photosynthesis and carbon metabolism and stress/defense response. Proteins involved in protein synthesis and signal transduction were also highly observed in the MC-LR/CYN experiment. Although distinct protein abundance patterns were observed in both experiments, the effects appear to be concentration-dependent, and the effects of the mixture were clearly stronger than those of CYN alone. The obtained results highlight the putative tolerance of lettuce to CYN at concentrations up to 100 lg/l. Furthermore, the combination of CYN with MC-LR at low concentrations (1 lg/l) stimulated a significant increase in the fresh weight (fr. wt) of lettuce leaves and at the proteomic level resulted in the increase in abundance of a high number of proteins. In contrast, many proteins exhibited a decrease in abundance or were absent in the gels of the simultaneous exposure to 10 and 100 lg/l MC-LR/CYN. In the latter, also a significant decrease in the fr. wt of lettuce leaves was obtained. These findings provide important insights into the molecular mechanisms of the lettuce response to CYN and MC-LR/CYN and may contribute to the identification of potential protein markers of exposure and proteins that may confer tolerance to CYN and MC-LR/CYN. Furthermore, because lettuce is an important crop worldwide, this study may improve our understanding of the potential impact of these cyanotoxins on its quality traits (e.g., presence of allergenic proteins).
Resumo:
Microcystin-leucine and arginine (microcystin- LR) is a cyanotoxin produced by cyanobacteria like Microcystis aeruginosa, and it’s considered a threat to water quality, agriculture, and human health. Rice (Oryzasativa) is a plant of great importance in human food consumption and economy, with extensive use around the world. It is therefore important to assess the possible effects of using water contaminated with microcystin-LR to irrigate rice crops, in order to ensure a safe, high quality product to consumers. In this study, 12 and 20-day-old plants were exposed during 2 or 7 days to a M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations, 0.26–78 lg/L. Fresh and dry weight of roots and leaves, chlorophyll fluorescence, glutathione S-transferase and glutathione peroxidase activities, and protein identification by mass spectrometry through two-dimensional gel electrophoresis from root and leaf tissues, were evaluated in order to gauge the plant’s physiological condition and biochemical response after toxin exposure. Results obtained from plant biomass, chlorophyll fluorescence, and enzyme activity assays showed no significant differences between control and treatment groups. How- ever, proteomics data indicates that plants respond to M. aeruginosa extract containing environmentally relevant microcystin-LR concentrations by changing their metabolism, responding differently to different toxin concentrations. Biological processes most affected were related to protein folding and stress response, protein biosynthesis, cell signalling and gene expression regulation, and energy and carbohydrate metabolism which may denote a toxic effect induced by M. aeruginosa extract and microcystin- LR. Theimplications of the metabolic alterations in plant physiology and growth require further elucidation.
Resumo:
Ammonia is an important gas in many power plants and industrial processes so its detection is of extreme importance in environmental monitoring and process control due to its high toxicity. Ammonia’s threshold limit is 25 ppm and the exposure time limit is 8 h, however exposure to 35 ppm is only secure for 10 min. In this work a brief introduction to ammonia aspects are presented, like its physical and chemical properties, the dangers in its manipulation, its ways of production and its sources. The application areas in which ammonia gas detection is important and needed are also referred: environmental gas analysis (e.g. intense farming), automotive-, chemical- and medical industries. In order to monitor ammonia gas in these different areas there are some requirements that must be attended. These requirements determine the choice of sensor and, therefore, several types of sensors with different characteristics were developed, like metal oxides, surface acoustic wave-, catalytic-, and optical sensors, indirect gas analyzers, and conducting polymers. All the sensors types are described, but more attention will be given to polyaniline (PANI), particularly to its characteristics, syntheses, chemical doping processes, deposition methods, transduction modes, and its adhesion to inorganic materials. Besides this, short descriptions of PANI nanostructures, the use of electrospinning in the formation of nanofibers/microfibers, and graphene and its characteristics are included. The created sensor is an instrument that tries to achieve a goal of the medical community in the control of the breath’s ammonia levels being an easy and non-invasive method for diagnostic of kidney malfunction and/or gastric ulcers. For that the device should be capable to detect different levels of ammonia gas concentrations. So, in the present work an ammonia gas sensor was developed using a conductive polymer composite which was immobilized on a carbon transducer surface. The experiments were targeted to ammonia measurements at ppb level. Ammonia gas measurements were carried out in the concentration range from 1 ppb to 500 ppb. A commercial substrate was used; screen-printed carbon electrodes. After adequate surface pre-treatment of the substrate, its electrodes were covered by a nanofibrous polymeric composite. The conducting polyaniline doped with sulfuric acid (H2SO4) was blended with reduced graphene oxide (RGO) obtained by wet chemical synthesis. This composite formed the basis for the formation of nanofibers by electrospinning. Nanofibers will increase the sensitivity of the sensing material. The electrospun PANI-RGO fibers were placed on the substrate and then dried at ambient temperature. Amperometric measurements were performed at different ammonia gas concentrations (1 to 500 ppb). The I-V characteristics were registered and some interfering gases were studied (NO2, ethanol, and acetone). The gas samples were prepared in a custom setup and were diluted with dry nitrogen gas. Electrospun nanofibers of PANI-RGO composite demonstrated an enhancement in NH3 gas detection when comparing with only electrospun PANI nanofibers. Was visible higher range of resistance at concentrations from 1 to 500 ppb. It was also observed that the sensor had stable, reproducible and recoverable properties. Moreover, it had better response and recovery times. The new sensing material of the developed sensor demonstrated to be a good candidate for ammonia gas determination.
Resumo:
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: * In previous work, we showed a long-term and concentration-dependent beneficial effect of the non-nucleoside reverse transcriptase inhibitor efavirenz (EFV) on high-density lipoproteins (HDL) in human immunodeficiency virus (HIV)-infected patients. * Furthermore, it has been suggested that instead of the current practice of only measuring HDL-chelesterol values, the evaluation of HDL function, namely its antioxidant properties, might be an improved tool for identifying subjects at increased risk for cardiovascular events. * Paraoxonase-1 (PON-1) is an enzyme associated with HDL that is responsible for HDL antioxidant function. WHAT THIS STUDY ADDS: * In the present work, we studied the effect of EFV on the activity of PON-1 and showed, for the first time, that EFV-based antiretroviral therapy is associated with a better antioxidant function, i.e. with a higher PON-1 activity. AIMS: A long-term and concentration-dependent beneficial effect of efavirenz (EFV) on cholesterol associated with high-density lipoprotein (HDL-c) in human immunodeficiency virus (HIV)-infected patients has been documented. Furthermore, it has been suggested that, instead of the current practice of only measuring HDL-c values, the evaluation of HDL quality might be an improved tool for identifying subjects at increased risk of cardiovascular events. Paraoxonase-1 (PON-1) is an enzyme associated with HDL that is involved in the onset of cardiovascular disease and responsible for HDL antioxidant function. The aim of the present study was to investigate the effect of EFV on the circulating activity of PON-1 in HIV-infected patients. METHODS: The patients included were adults with a documented HIV-1 infection, nontreated or treated with antiretroviral regimens including EFV 600 mg once daily as first therapeutic regimen for at least 3 months. The influence of treatment with EFV, HDL-c and CD4 cell count on PON-1 activity was analysed. RESULTS: HIV-infected White patients treated with EFV had higher PON-1 activity [77.35 U l(-1) (65.66, 89.04)] (P < 0.05) and higher PON-1 activity : HDL-c ratio [1.88 (1.49, 2.28)] (P < 0.01) than untreated patients. PON-1 activity was higher in Black patients (P < 0.001) and in patients with a CD4 cell count >500 cells ml(-1) (P= 0.0120). CONCLUSIONS: EFV-based antiretroviral regimens are associated with HDL particles with a better antioxidant function, i.e. with a higher PON-1 activity. The PON-1 activity of Black patients is higher than that found in Whites regardless of treatment. Ethnicity should be taken into consideration when studying drug effects on PON-1 activity.
Resumo:
AIMS: To investigate the long-term effects of efavirenz on cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein (LDL-C) and triglycerides (TG). METHODS: Thirty-four HIV-infected patients who commenced efavirenz therapy were monitored for 36 months. RESULTS: In patients with baseline HDL-C<40 mg.dL-1 an increase in HDL-C from 31+/-1 mg.dL-1 to 44+/-2 mg.dL-1 (95% confidence interval 5.9, 21.9, P<0.01) was observed and remained throughout the follow-up period. Median efavirenz plasma concentration was 1.98 mg.L-1 and a direct correlation between percentage of HDL-C variation or TC/HDL-C ratio and efavirenz plasma concentrations was found. CONCLUSIONS: There is evidence of a long-term and concentration-dependent beneficial effect of efavirenz on HDL-C in HIV-infected patients.
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia do Ambiente
Resumo:
We present the case of a 31-year-old man with acute manifestation of progressive multifocal leukoencephalopathy (PML) as an AIDS-defining disease. The patient presented with a three-day history of neurological disease, brain lesions without mass effect or contrast uptake and a slightly increased protein concentration in cerebrospinal fluid. A serological test for HIV was positive and the CD4+ T-cell count was 427/mm³. Histological examination of the brain tissue revealed abnormalities compatible with PML. The disease progressed despite antiretroviral therapy, and the patient died three months later. PML remains an important cause of morbidity and mortality among HIV-infected patients.
Resumo:
Cystic fibrosis is a genetic disease usually diagnosed by abnormal sweat testing. We report a case of an 18-year-old female with bronchiectasis, chronic P. aeruginosa infection, and normal sweat chloride concentrations who experienced rapid decrease of lung function and clinical deterioration despite treatment. Given the high suspicion ofcystic fibrosis, broad genotyping testing was performed, showing a compound heterozygous with deltaF508 and 3849+10kb C->T mutations, therefore confirming cystic fibrosis diagnosis. Although the sweat chloride test remains the gold standard for the diagnosis of cystic fibrosis, alternative diagnostic tests such as genotyping and electrophysiologic measurements must be performed if there is suspicion of cystic fibrosis, despite normal or borderline sweat chloride levels.
Resumo:
The effects of food concentration and temperature on embryonic and postem-bryonic duration of three tropical species, Daphnia gessneri(1.5mm), Diaphanosoma sarsi(1.2mm) and Moina reticulata(0.8mm), were investigated as part of life cycle studies which included growth, body size and reproduction. These are the very first experimental studies undertaken on these species. The long-term growth experiments were performed under controlled laboratory conditions at all combinations of temperature (22"C, 27"C and 32"C) and constant food concentration (0.03, 0.05, 0.10, 0.25, 0.50 and 1.00 mgC/L) of the unicellular green alga Scenedesmus acutus.Animals were examined twice daily throughout their life cycle from the neonate to third adult instar. In all three species, temperature exerted the most powerful influence on embryonic duration but there was also a smaller food effect. In D. gessneri,postembry-onic durations remained more or less the same at food levels 0.25 mgC/L but were influenced by temperature. At food concentrations of 0.1 mgC/L or lower, postembryonic durations became increasingly prolonged, particularly at high temperatures. This threshold concentration is affected by temperature: in D. gessneri,it was 0.1 mgC/L at 22oC and 27oC but higher at 32oC (between 0.25 and 0.50 mgC/L). At the same temperature of 27oC, the food threshold level varied between species: it was higher (0.25 mgC/L) for D. sarsiand lower (0.05 mgC/L) for M. reticulatacompared with D. gessneri(0.1 mgC/L). In both embryonic and postembryonic durations there is a body size effect as the absolute durations were longest in the largest species and shortest in the smallest species In all three species, prolongation of postembryonic duration at combinations of high temperature and lowered food levels was accompanied by increased number of juvenile instars.
Resumo:
ABSTRACT: Despite the reduction in deforestation rate in recent years, the impact of global warming by itself can cause changes in vegetation cover. The objective of this work was to investigate the possible changes on the major Brazilian biome, the Amazon Rainforest, under different climate change scenarios. The dynamic vegetation models may simulate changes in vegetation distribution and the biogeochemical processes due to climate change. Initially, the Inland dynamic vegetation model was forced with initial and boundary conditions provided by CFSR and the Eta regional climate model driven by the historical simulation of HadGEM2-ES. These simulations were validated using the Santarém tower data. In the second part, we assess the impact of a future climate change on the Amazon biome by applying the Inland model forced with regional climate change projections. The projections show that some areas of rainforest in the Amazon region are replaced by deciduous forest type and grassland in RCP4.5 scenario and only by grassland in RCP8.5 scenario at the end of this century. The model indicates a reduction of approximately 9% in the area of tropical forest in RCP4.5 scenario and a further reduction in the RCP8.5 scenario of about 50% in the eastern region of Amazon. Although the increase of CO2 atmospheric concentration may favour the growth of trees, the projections of Eta-HadGEM2-ES show increase of temperature and reduction of rainfall in the Amazon region, which caused the forest degradation in these simulations.