945 resultados para High Nitrogen Load


Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-resolution records of the nitrogen isotopic composition of organic matter (d15Norg), opal content, and opal accumulation rates from the central Gulf of California reveal large and abrupt variations during deglaciation and gradual Holocene changes coincident with climatic changes recorded in the North Atlantic. Homogenous sediments with relatively low d15Norg values and low opal content were deposited at the end of the last glacial period, during the Younger-Dryas event, and during the middle to late Holocene. In contrast, laminated sediments deposited in the two deglacial stages are characterized by very high d15Norg values (>14 per mil) and opal accumulation rates (29-41 mg/cm**2/yr). Abrupt shifts in d15Norg were driven by widespread changes in the extent of suboxic subsurface waters supporting denitrification and were amplified in the central gulf record due to variations in upwelling, vertical mixing, and/or the latitudinal position of the Intertropical Convergence Zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10-15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000-5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.