950 resultados para High Definition Finite Difference Time Domain
Resumo:
AIM: Fabry disease is considered primarily as a progressive small vessel disease, with ischaemic degenerative lesions involving the kidneys, brain and heart. Macrovascular involvement in male patients includes an accelerated wall hypertrophy of the radial artery and a thickening of the intima-media of the common carotid artery. The aim of this study is to evaluate the prevalence and severity of carotid artery atherosclerosis in hemizygous and heterozygous patients with Fabry disease, compared with a matched control population. METHODS: The common carotid artery intima-media thickness (IMT) of 53 patients with Fabry disease (24 men, 29 women) was measured by high-definition ultrasonography, and the presence or absence of atherosclerotic plaques reported. Results were compared with those of 120 age-matched healthy individuals (83 men, 37 women). RESULTS: The common carotid artery IMT was increased to the same extent in male and female patients with Fabry disease (706+/-211 microm and 749+/-395 microm, respectively) compared with that of the control population (614+/-113 microm). In the Fabry population, IMT did not correlate with either systolic blood pressure or with renal function (plasma creatinine). In the control population, only systolic blood pressure was positively and significantly correlated with IMT. Atherosclerotic plaques in the common carotid artery were not observed in any patient with Fabry disease, whereas 34% of the control population had carotid artery plaques, as evidenced by focal non-homogeneous intima-media thickening greater than 1.2 mm. CONCLUSION: This study presents evidence of a major increase in common carotid artery IMT, both in hemizygous and heterozygous patients with Fabry disease, in the absence of focal atherosclerotic plaques. These results suggest that the conduit arteries may be protected from atherosclerosis in Fabry disease.
Resumo:
The increased availability of soil water is important for the management of non-irrigated orange orchards. The objective of this study was to evaluate the availability of soil water in a Haplorthox (Rhodic Ferralsol) under different tillage systems used for orchard plantation, mulch management and rootstocks in a "Pêra" orange orchard in northwest Paraná, Brazil. An experiment in a split-split-plot design was established in 2002, in an area cultivated with Brachiaria brizantha grass in which three tillage systems (no tillage, conventional tillage and strip-tillage) were used for orchard plantation. This grass was mowed twice a year between the rows, representing two mulch managements in the split plots (no mulching and mulching in the plant rows). The split-split-plots were represented by two rootstocks ("Rangpur" lime and "Cleopatra" mandarin). The soil water content in the plant rows was evaluated in the 0-20 cm layer in 2007 and at 0-20 and 20-40 cm in 2008-2009. The effect of soil tillage systems prior to implantation of orange orchards on soil water availability was less pronounced than mulching and the rootstocks. The soil water availability was lower when "Pêra" orange trees were grafted on "Cleopatra" mandarin than on "Rangpur" lime rootstocks. Mulching had a positive influence on soil water availability in the sandy surface layer (0-20 cm) and sandy clay loam subsurface (20-40 cm) of the soil in the spring. The production of B. brizantha between the rows and residue disposal in the plant rows as mulch increased water availability to the "Pêra" orange trees.
Resumo:
In many practical applications the state of field soils is monitored by recording the evolution of temperature and soil moisture at discrete depths. We theoretically investigate the systematic errors that arise when mass and energy balances are computed directly from these measurements. We show that, even with no measurement or model errors, large residuals might result when finite difference approximations are used to compute fluxes and storage term. To calculate the limits set by the use of spatially discrete measurements on the accuracy of balance closure, we derive an analytical solution to estimate the residual on the basis of the two key parameters: the penetration depth and the distance between the measurements. When the thickness of the control layer for which the balance is computed is comparable to the penetration depth of the forcing (which depends on the thermal diffusivity and on the forcing period) large residuals arise. The residual is also very sensitive to the distance between the measurements, which requires accurately controlling the position of the sensors in field experiments. We also demonstrate that, for the same experimental setup, mass residuals are sensitively larger than the energy residuals due to the nonlinearity of the moisture transport equation. Our analysis suggests that a careful assessment of the systematic mass error introduced by the use of spatially discrete data is required before using fluxes and residuals computed directly from field measurements.
Resumo:
Detailed knowledge on water percolation into the soil in irrigated areas is fundamental for solving problems of drainage, pollution and the recharge of underground aquifers. The aim of this study was to evaluate the percolation estimated by time-domain-reflectometry (TDR) in a drainage lysimeter. We used Darcy's law with K(θ) functions determined by field and laboratory methods and by the change in water storage in the soil profile at 16 points of moisture measurement at different time intervals. A sandy clay soil was saturated and covered with plastic sheet to prevent evaporation and an internal drainage trial in a drainage lysimeter was installed. The relationship between the observed and estimated percolation values was evaluated by linear regression analysis. The results suggest that percolation in the field or laboratory can be estimated based on continuous monitoring with TDR, and at short time intervals, of the variations in soil water storage. The precision and accuracy of this approach are similar to those of the lysimeter and it has advantages over the other evaluated methods, of which the most relevant are the possibility of estimating percolation in short time intervals and exemption from the predetermination of soil hydraulic properties such as water retention and hydraulic conductivity. The estimates obtained by the Darcy-Buckingham equation for percolation levels using function K(θ) predicted by the method of Hillel et al. (1972) provided compatible water percolation estimates with those obtained in the lysimeter at time intervals greater than 1 h. The methods of Libardi et al. (1980), Sisson et al. (1980) and van Genuchten (1980) underestimated water percolation.
Resumo:
Exact solutions to FokkerPlanck equations with nonlinear drift are considered. Applications of these exact solutions for concrete models are studied. We arrive at the conclusion that for certain drifts we obtain divergent moments (and infinite relaxation time) if the diffusion process can be extended without any obstacle to the whole space. But if we introduce a potential barrier that limits the diffusion process, moments converge with a finite relaxation time.
Resumo:
We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.
Resumo:
This paper presents a new method to analyze timeinvariant linear networks allowing the existence of inconsistent initial conditions. This method is based on the use of distributions and state equations. Any time-invariant linear network can be analyzed. The network can involve any kind of pure or controlled sources. Also, the transferences of energy that occur at t=O are determined, and the concept of connection energy is introduced. The algorithms are easily implemented in a computer program.
Resumo:
An Actively Heated Fiber Optics (AHFO) method to estimate soil moisture is tested and the analysis technique improved on. The measurements were performed in a lysimeter uniformly packed with loam soil with variable water content profiles. In the first meter of the soil profi le, 30 m of fiber optic cable were installed in a 12 loops coil. The metal sheath armoring the fiber cable was used as an electrical resistance heater to generate a heat pulse, and the soil response was monitored with a Distributed Temperature Sensing (DTS) system. We study the cooling following three continuous heat pulses of 120 s at 36 W m(-1) by means of long-time approximation of radial heat conduction. The soil volumetric water contents were then inferred from the estimated thermal conductivities through a specifically calibrated model relating thermal conductivity and volumetric water content. To use the pre-asymptotic data we employed a time correction that allowed the volumetric water content to be estimated with a precision of 0.01-0.035 (m(3) m(-3)). A comparison of the AHFO measurements with soil-moisture measurements obtained with calibrated capacitance-based probes gave good agreement for wetter soils [discrepancy between the two methods was less than 0.04 (m(3) m(-3))]. In the shallow drier soils, the AHFO method underestimated the volumetric water content due to the longertime required for the temperature increment to become asymptotic in less thermally conductive media [discrepancy between the two methods was larger than 0.1 (m(3) m(-3))]. The present work suggests that future applications of the AHFO method should include longer heat pulses, that longer heating and cooling events are analyzed, and, temperature increments ideally be measured with higher frequency.
Resumo:
A major issue in the application of waveform inversion methods to crosshole ground-penetrating radar (GPR) data is the accurate estimation of the source wavelet. Here, we explore the viability and robustness of incorporating this step into a recently published time-domain inversion procedure through an iterative deconvolution approach. Our results indicate that, at least in non-dispersive electrical environments, such an approach provides remarkably accurate and robust estimates of the source wavelet even in the presence of strong heterogeneity of both the dielectric permittivity and electrical conductivity. Our results also indicate that the proposed source wavelet estimation approach is relatively insensitive to ambient noise and to the phase characteristics of the starting wavelet. Finally, there appears to be little to no trade-off between the wavelet estimation and the tomographic imaging procedures.
Resumo:
After a rockfall event, a usual post event survey includes qualitative volume estimation, trajectory mapping and determination of departing zones. However, quantitative measurements are not usually made. Additional relevant quantitative information could be useful in determining the spatial occurrence of rockfall events and help us in quantifying their size. Seismic measurements could be suitable for detection purposes since they are non invasive methods and are relatively inexpensive. Moreover, seismic techniques could provide important information on rockfall size and location of impacts. On 14 February 2007 the Avalanche Group of the University of Barcelona obtained the seismic data generated by an artificially triggered rockfall event at the Montserrat massif (near Barcelona, Spain) carried out in order to purge a slope. Two 3 component seismic stations were deployed in the area about 200 m from the explosion point that triggered the rockfall. Seismic signals and video images were simultaneously obtained. The initial volume of the rockfall was estimated to be 75 m3 by laser scanner data analysis. After the explosion, dozens of boulders ranging from 10¿4 to 5 m3 in volume impacted on the ground at different locations. The blocks fell down onto a terrace, 120 m below the release zone. The impact generated a small continuous mass movement composed of a mixture of rocks, sand and dust that ran down the slope and impacted on the road 60 m below. Time, time-frequency evolution and particle motion analysis of the seismic records and seismic energy estimation were performed. The results are as follows: 1 ¿ A rockfall event generates seismic signals with specific characteristics in the time domain; 2 ¿ the seismic signals generated by the mass movement show a time-frequency evolution different from that of other seismogenic sources (e.g. earthquakes, explosions or a single rock impact). This feature could be used for detection purposes; 3 ¿ particle motion plot analysis shows that the procedure to locate the rock impact using two stations is feasible; 4 ¿ The feasibility and validity of seismic methods for the detection of rockfall events, their localization and size determination are comfirmed.
Resumo:
A number of geophysical methods, such as ground-penetrating radar (GPR), have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, the stochastic inversion of such data within a coupled geophysical-hydrological framework may allow for the effective estimation of vadose zone hydraulic parameters and their corresponding uncertainties. A critical issue in stochastic inversion is choosing prior parameter probability distributions from which potential model configurations are drawn and tested against observed data. A well chosen prior should reflect as honestly as possible the initial state of knowledge regarding the parameters and be neither overly specific nor too conservative. In a Bayesian context, combining the prior with available data yields a posterior state of knowledge about the parameters, which can then be used statistically for predictions and risk assessment. Here we investigate the influence of prior information regarding the van Genuchten-Mualem (VGM) parameters, which describe vadose zone hydraulic properties, on the stochastic inversion of crosshole GPR data collected under steady state, natural-loading conditions. We do this using a Bayesian Markov chain Monte Carlo (MCMC) inversion approach, considering first noninformative uniform prior distributions and then more informative priors derived from soil property databases. For the informative priors, we further explore the effect of including information regarding parameter correlation. Analysis of both synthetic and field data indicates that the geophysical data alone contain valuable information regarding the VGM parameters. However, significantly better results are obtained when we combine these data with a realistic, informative prior.
Resumo:
Cross-hole radar tomography is a useful tool for mapping shallow subsurface electrical properties viz. dielectric permittivity and electrical conductivity. Common practice is to invert cross-hole radar data with ray-based tomographic algorithms using first arrival traveltimes and first cycle amplitudes. However, the resolution of conventional standard ray-based inversion schemes for cross-hole ground-penetrating radar (GPR) is limited because only a fraction of the information contained in the radar data is used. The resolution can be improved significantly by using a full-waveform inversion that considers the entire waveform, or significant parts thereof. A recently developed 2D time-domain vectorial full-waveform crosshole radar inversion code has been modified in the present study by allowing optimized acquisition setups that reduce the acquisition time and computational costs significantly. This is achieved by minimizing the number of transmitter points and maximizing the number of receiver positions. The improved algorithm was employed to invert cross-hole GPR data acquired within a gravel aquifer (4-10 m depth) in the Thur valley, Switzerland. The simulated traces of the final model obtained by the full-waveform inversion fit the observed traces very well in the lower part of the section and reasonably well in the upper part of the section. Compared to the ray-based inversion, the results from the full-waveform inversion show significantly higher resolution images. At either side, 2.5 m distance away from the cross-hole plane, borehole logs were acquired. There is a good correspondence between the conductivity tomograms and the natural gamma logs at the boundary of the gravel layer and the underlying lacustrine clay deposits. Using existing petrophysical models, the inversion results and neutron-neutron logs are converted to porosity. Without any additional calibration, the values obtained for the converted neutron-neutron logs and permittivity results are very close and similar vertical variations can be observed. The full-waveform inversion provides in both cases additional information about the subsurface. Due to the presence of the water table and associated refracted/reflected waves, the upper traces are not well fitted and the upper 2 m in the permittivity and conductivity tomograms are not reliably reconstructed because the unsaturated zone is not incorporated into the inversion domain.
Resumo:
Este estudo visou à obtenção das curvas de calibração de um equipamento de TDR (Time Domain Reflectometry) em cinco solos da região de Piracicaba, SP, e testou a adequação da calibração interna do equipamento e das curvas genéricas de calibração. As curvas ajustadas, em cada solo separadamente, apresentaram coeficientes de determinação (R²) da ordem de 0,99, e a curva ajustada para o conjunto de dados dos cinco solos apresentou R² = 0,976. A análise de erros-padrão de estimativa mostrou que as curvas genéricas não se prestam às aplicações mais sensíveis, tais como na determinação absoluta do conteúdo de água do solo. Os testes de comparação entre as curvas ajustadas, a curva genérica e a curva embutida no equipamento mostraram que a primeira é superior às demais. O estudo mostrou, também, que a curva de calibração embutida no equipamento é inadequada para as determinações de umidade nos cinco solos estudados.
Resumo:
In this paper we use a Terahertz (THz) time-domain system to image and analyze the structure of an artwork attributed to the Spanish artist Goya painted in 1771. The THz images show features that cannot be seen with optical inspection and complement data obtained with X-ray imaging that provide evidence of its authenticity, which is validated by other independent studies. For instance, a feature with a strong resemblance with one of Goya"s known signatures is seen in the THz images. In particular, this paper demonstrates the potential of THz imaging as a complementary technique along with X-ray for the verification and authentication of artwork pieces through the detection of features that remain hidden to optical inspection.
Resumo:
Line converters have become an attractive AC/DC power conversion solution in industrial applications. Line converters are based on controllable semiconductor switches, typically insulated gate bipolar transistors. Compared to the traditional diode bridge-based power converters line converters have many advantageous characteristics, including bidirectional power flow, controllable de-link voltage and power factor and sinusoidal line current. This thesis considers the control of the lineconverter and its application to power quality improving. The line converter control system studied is based on the virtual flux linkage orientation and the direct torque control (DTC) principle. A new DTC-based current control scheme is introduced and analyzed. The overmodulation characteristics of the DTC converter are considered and an analytical equation for the maximum modulation index is derived. The integration of the active filtering features to the line converter isconsidered. Three different active filtering methods are implemented. A frequency-domain method, which is based on selective harmonic sequence elimination, anda time-domain method, which is effective in a wider frequency band, are used inharmonic current compensation. Also, a voltage feedback active filtering method, which mitigates harmonic sequences of the grid voltage, is implemented. The frequency-domain and the voltage feedback active filtering control systems are analyzed and controllers are designed. The designs are verified with practical measurements. The performance and the characteristics of the implemented active filtering methods are compared and the effect of the L- and the LCL-type line filteris discussed. The importance of the correct grid impedance estimate in the voltage feedback active filter control system is discussed and a new measurement-based method to obtain it is proposed. Also, a power conditioning system (PCS) application of the line converter is considered. A new method for correcting the voltage unbalance of the PCS-fed island network is proposed and experimentally validated.