864 resultados para Hierarchical sampling
Resumo:
Long-term monitoring of forest soils as part of a pan-European network to detect environmental change depends on an accurate determination of the mean of the soil properties at each monitoring event. Forest soil is known to be very variable spatially, however. A study was undertaken to explore and quantify this variability at three forest monitoring plots in Britain. Detailed soil sampling was carried out, and the data from the chemical analyses were analysed by classical statistics and geostatistics. An analysis of variance showed that there were no consistent effects from the sample sites in relation to the position of the trees. The variogram analysis showed that there was spatial dependence at each site for several variables and some varied in an apparently periodic way. An optimal sampling analysis based on the multivariate variogram for each site suggested that a bulked sample from 36 cores would reduce error to an acceptable level. Future sampling should be designed so that it neither targets nor avoids trees and disturbed ground. This can be achieved best by using a stratified random sampling design.
Resumo:
As part of the European Commission (EC)'s revision of the Sewage Sludge Directive and the development of a Biowaste Directive, there was recognition of the difficulty of comparing data from Member States (MSs) because of differences in sampling and analytical procedures. The 'HORIZONTAL' initiative, funded by the EC and MSs, seeks to address these differences in approach and to produce standardised procedures in the form of CEN standards. This article is a preliminary investigation into aspects of the sampling of biosolids, composts and soils to which there is a history of biosolid application. The article provides information on the measurement uncertainty associated with sampling from heaps, large bags and pipes and soils in the landscape under a limited set of conditions, using sampling approaches in space and time and sample numbers based on procedures widely used in the relevant industries and when sampling similar materials. These preliminary results suggest that considerably more information is required before the appropriate sample design, optimum number of samples, number of samples comprising a composite, and temporal and spatial frequency of sampling might be recommended to achieve consistent results of a high level of precision and confidence. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
[1] Cloud cover is conventionally estimated from satellite images as the observed fraction of cloudy pixels. Active instruments such as radar and Lidar observe in narrow transects that sample only a small percentage of the area over which the cloud fraction is estimated. As a consequence, the fraction estimate has an associated sampling uncertainty, which usually remains unspecified. This paper extends a Bayesian method of cloud fraction estimation, which also provides an analytical estimate of the sampling error. This method is applied to test the sensitivity of this error to sampling characteristics, such as the number of observed transects and the variability of the underlying cloud field. The dependence of the uncertainty on these characteristics is investigated using synthetic data simulated to have properties closely resembling observations of the spaceborne Lidar NASA-LITE mission. Results suggest that the variance of the cloud fraction is greatest for medium cloud cover and least when conditions are mostly cloudy or clear. However, there is a bias in the estimation, which is greatest around 25% and 75% cloud cover. The sampling uncertainty is also affected by the mean lengths of clouds and of clear intervals; shorter lengths decrease uncertainty, primarily because there are more cloud observations in a transect of a given length. Uncertainty also falls with increasing number of transects. Therefore a sampling strategy aimed at minimizing the uncertainty in transect derived cloud fraction will have to take into account both the cloud and clear sky length distributions as well as the cloud fraction of the observed field. These conclusions have implications for the design of future satellite missions. This paper describes the first integrated methodology for the analytical assessment of sampling uncertainty in cloud fraction observations from forthcoming spaceborne radar and Lidar missions such as NASA's Calipso and CloudSat.
Resumo:
The goal of the review is to provide a state-of-the-art survey on sampling and probe methods for the solution of inverse problems. Further, a configuration approach to some of the problems will be presented. We study the concepts and analytical results for several recent sampling and probe methods. We will give an introduction to the basic idea behind each method using a simple model problem and then provide some general formulation in terms of particular configurations to study the range of the arguments which are used to set up the method. This provides a novel way to present the algorithms and the analytic arguments for their investigation in a variety of different settings. In detail we investigate the probe method (Ikehata), linear sampling method (Colton-Kirsch) and the factorization method (Kirsch), singular sources Method (Potthast), no response test (Luke-Potthast), range test (Kusiak, Potthast and Sylvester) and the enclosure method (Ikehata) for the solution of inverse acoustic and electromagnetic scattering problems. The main ideas, approaches and convergence results of the methods are presented. For each method, we provide a historical survey about applications to different situations.
Resumo:
In this paper we focus on the one year ahead prediction of the electricity peak-demand daily trajectory during the winter season in Central England and Wales. We define a Bayesian hierarchical model for predicting the winter trajectories and present results based on the past observed weather. Thanks to the flexibility of the Bayesian approach, we are able to produce the marginal posterior distributions of all the predictands of interest. This is a fundamental progress with respect to the classical methods. The results are encouraging in both skill and representation of uncertainty. Further extensions are straightforward at least in principle. The main two of those consist in conditioning the weather generator model with respect to additional information like the knowledge of the first part of the winter and/or the seasonal weather forecast. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Recently, two approaches have been introduced that distribute the molecular fragment mining problem. The first approach applies a master/worker topology, the second approach, a completely distributed peer-to-peer system, solves the scalability problem due to the bottleneck at the master node. However, in many real world scenarios the participating computing nodes cannot communicate directly due to administrative policies such as security restrictions. Thus, potential computing power is not accessible to accelerate the mining run. To solve this shortcoming, this work introduces a hierarchical topology of computing resources, which distributes the management over several levels and adapts to the natural structure of those multi-domain architectures. The most important aspect is the load balancing scheme, which has been designed and optimized for the hierarchical structure. The approach allows dynamic aggregation of heterogenous computing resources and is applied to wide area network scenarios.
Resumo:
The steadily accumulating literature on technical efficiency in fisheries attests to the importance of efficiency as an indicator of fleet condition and as an object of management concern. In this paper, we extend previous work by presenting a Bayesian hierarchical approach that yields both efficiency estimates and, as a byproduct of the estimation algorithm, probabilistic rankings of the relative technical efficiencies of fishing boats. The estimation algorithm is based on recent advances in Markov Chain Monte Carlo (MCMC) methods—Gibbs sampling, in particular—which have not been widely used in fisheries economics. We apply the method to a sample of 10,865 boat trips in the US Pacific hake (or whiting) fishery during 1987–2003. We uncover systematic differences between efficiency rankings based on sample mean efficiency estimates and those that exploit the full posterior distributions of boat efficiencies to estimate the probability that a given boat has the highest true mean efficiency.
Resumo:
R. H. Whittaker's idea that plant diversity can be divided into a hierarchy of spatial components from alpha at the within-habitat scale through beta for the turnover of species between habitats to gamma along regional gradients implies the underlying existence of alpha, beta, and gamma niches. We explore the hypothesis that the evolution of a, (3, and gamma niches is also hierarchical, with traits that define the a niche being labile, while those defining a and 7 niches are conservative. At the a level we find support for the hypothesis in the lack of close significant phylogenetic relationship between meadow species that have similar a niches. In a second test, a niche overlap based on a variety of traits is compared between congeners and noncongeners in several communities; here, too, there is no evidence of a correlation between a niche and phylogeny. To test whether beta and gamma niches evolve conservatively, we reconstructed the evolution of relevant traits on evolutionary trees for 14 different clades. Tests against null models revealed a number of instances, including some in island radiations, in which habitat (beta niche) and elevational maximum (an aspect of the gamma niche) showed evolutionary conservatism.
Resumo:
The soil fauna is often a neglected group in many large-scale studies of farmland biodiversity due to difficulties in extracting organisms efficiently from the soil. This study assesses the relative efficiency of the simple and cheap sampling method of handsorting against Berlese-Tullgren funnel and Winkler apparatus extraction. Soil cores were taken from grassy arable field margins and wheat fields in Cambridgeshire, UK, and the efficiencies of the three methods in assessing the abundances and species densities of soil macroinver-tebrates were compared. Handsorting in most cases was as efficient at extracting the majority of the soil macrofauna as the Berlese-Tullgren funnel and Winkler bag methods, although it underestimated the species densities of the woodlice and adult beetles. There were no obvious biases among the three methods for the particular vegetation types sampled and no significant differences in the size distributions of the earthworms and beetles. Proportionally fewer damaged earthworms were recorded in larger (25 x 25 cm) soil cores when compared with smaller ones (15 x 15 cm). Handsorting has many benefits, including targeted extraction, minimum disturbance to the habitat and shorter sampling periods and may be the most appropriate method for studies of farmland biodiversity when a high number of soil cores need to be sampled. (C) 2008 Elsevier Masson SAS. All rights reserved.
A hierarchical Bayesian model for predicting the functional consequences of amino-acid polymorphisms
Resumo:
Genetic polymorphisms in deoxyribonucleic acid coding regions may have a phenotypic effect on the carrier, e.g. by influencing susceptibility to disease. Detection of deleterious mutations via association studies is hampered by the large number of candidate sites; therefore methods are needed to narrow down the search to the most promising sites. For this, a possible approach is to use structural and sequence-based information of the encoded protein to predict whether a mutation at a particular site is likely to disrupt the functionality of the protein itself. We propose a hierarchical Bayesian multivariate adaptive regression spline (BMARS) model for supervised learning in this context and assess its predictive performance by using data from mutagenesis experiments on lac repressor and lysozyme proteins. In these experiments, about 12 amino-acid substitutions were performed at each native amino-acid position and the effect on protein functionality was assessed. The training data thus consist of repeated observations at each position, which the hierarchical framework is needed to account for. The model is trained on the lac repressor data and tested on the lysozyme mutations and vice versa. In particular, we show that the hierarchical BMARS model, by allowing for the clustered nature of the data, yields lower out-of-sample misclassification rates compared with both a BMARS and a frequen-tist MARS model, a support vector machine classifier and an optimally pruned classification tree.
Resumo:
The jackknife method is often used for variance estimation in sample surveys but has only been developed for a limited class of sampling designs.We propose a jackknife variance estimator which is defined for any without-replacement unequal probability sampling design. We demonstrate design consistency of this estimator for a broad class of point estimators. A Monte Carlo study shows how the proposed estimator may improve on existing estimators.