853 resultados para Heterogeneous interacting-agent model
Resumo:
Snake venoms contain components that affect the prey either by neurotoxic or haemorrhagic effects. The latter category affect haemostasis either by inhibiting or activating platelets or coagulation factors. They fall into several types based upon structure and mode of action. A major class is the snake C-type lectins or C-type lectin-like family which shows a typical folding like that in classic C-type lectins such as the selectins and mannose-binding proteins. Those in snake venoms are mostly based on a heterodimeric structure with two subunits alpha and beta, which are often oligomerized to form larger molecules. Simple heterodimeric members of this family have been shown to inhibit platelet functions by binding to GPIb but others activate platelets via the same receptor. Some that act via GPIb do so by inducing von Willebrand factor to bind to it. Another series of snake C-type lectins activate platelets by binding to GPVI while yet another series uses the integrin alpha(2)beta(1) to affect platelet function. The structure of more and more of these C-type lectins have now been, and are being, determined, often together with their ligands, casting light on binding sites and mechanisms. In addition, it is relatively easy to model the structure of the C-type lectins if the primary structure is known. These studies have shown that these proteins are quite a complex group, often with more than one platelet receptor as ligand and although superficially some appear to act as inhibitors, in fact most function by inducing thrombocytopenia by various routes. The relationship between structure and function in this group of venom proteins will be discussed.
Resumo:
BACKGROUND: The sensory drive hypothesis predicts that divergent sensory adaptation in different habitats may lead to premating isolation upon secondary contact of populations. Speciation by sensory drive has traditionally been treated as a special case of speciation as a byproduct of adaptation to divergent environments in geographically isolated populations. However, if habitats are heterogeneous, local adaptation in the sensory systems may cause the emergence of reproductively isolated species from a single unstructured population. In polychromatic fishes, visual sensitivity might become adapted to local ambient light regimes and the sensitivity might influence female preferences for male nuptial color. In this paper, we investigate the possibility of speciation by sensory drive as a byproduct of divergent visual adaptation within a single initially unstructured population. We use models based on explicit genetic mechanisms for color vision and nuptial coloration. RESULTS: We show that in simulations in which the adaptive evolution of visual pigments and color perception are explicitly modeled, sensory drive can promote speciation along a short selection gradient within a continuous habitat and population. We assumed that color perception evolves to adapt to the modal light environment that individuals experience and that females prefer to mate with males whose nuptial color they are most sensitive to. In our simulations color perception depends on the absorption spectra of an individual's visual pigments. Speciation occurred most frequently when the steepness of the environmental light gradient was intermediate and dispersal distance of offspring was relatively small. In addition, our results predict that mutations that cause large shifts in the wavelength of peak absorption promote speciation, whereas we did not observe speciation when peak absorption evolved by stepwise mutations with small effect. CONCLUSION: The results suggest that speciation can occur where environmental gradients create divergent selection on sensory modalities that are used in mate choice. Evidence for such gradients exists from several animal groups, and from freshwater and marine fishes in particular. The probability of speciation in a continuous population under such conditions may then critically depend on the genetic architecture of perceptual adaptation and female mate choice.
Resumo:
The primary challenge in groundwater and contaminant transport modeling is obtaining the data needed for constructing, calibrating and testing the models. Large amounts of data are necessary for describing the hydrostratigraphy in areas with complex geology. Increasingly states are making spatial data available that can be used for input to groundwater flow models. The appropriateness of this data for large-scale flow systems has not been tested. This study focuses on modeling a plume of 1,4-dioxane in a heterogeneous aquifer system in Scio Township, Washtenaw County, Michigan. The analysis consisted of: (1) characterization of hydrogeology of the area and construction of a conceptual model based on publicly available spatial data, (2) development and calibration of a regional flow model for the site, (3) conversion of the regional model to a more highly resolved local model, (4) simulation of the dioxane plume, and (5) evaluation of the model's ability to simulate field data and estimation of the possible dioxane sources and subsequent migration until maximum concentrations are at or below the Michigan Department of Environmental Quality's residential cleanup standard for groundwater (85 ppb). MODFLOW-2000 and MT3D programs were utilized to simulate the groundwater flow and the development and movement of the 1, 4-dioxane plume, respectively. MODFLOW simulates transient groundwater flow in a quasi-3-dimensional sense, subject to a variety of boundary conditions that can simulate recharge, pumping, and surface-/groundwater interactions. MT3D simulates solute advection with groundwater flow (using the flow solution from MODFLOW), dispersion, source/sink mixing, and chemical reaction of contaminants. This modeling approach was successful at simulating the groundwater flows by calibrating recharge and hydraulic conductivities. The plume transport was adequately simulated using literature dispersivity and sorption coefficients, although the plume geometries were not well constrained.
Resumo:
Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.
Resumo:
Postmortem minimal invasive angiography has already been implemented to support virtual autopsy examinations. An experimental approach in a porcine model to overcome an initially described artificial tissue edema artifact by using a poly ethylene glycol (PEG) containing contrast agent solution showed promising results. The present publication describes the first application of PEG in a whole corpse angiographic CT examination. A minimal invasive postmortem CT angiography was performed in a human corpse utilizing the high viscosity contrast agent solution containing 65% of PEG. Injection was carried out via the femoral artery into the aortic root in simulated cardiac output conditions. Subsequent CT scanning delivered the 3D volume data of the whole corpse. Visualization of the human arterial anatomy was excellent and the contrast agent distribution was generally limited to the arterial system as intended. As exceptions an enhancement of the brain, the left ventricular myocardium and the renal cortex became obvious. This most likely represented the stage of centralization of the blood circulation at the time of death with dilatation of the precapillary arterioles within these tissues. Especially for the brain this resulted in a distinctively improved visualization of the intracerebral structures by CT. However, the general tissue edema artifact of postmortem minimal invasive angiography examinations could be distinctively reduced.
Resumo:
We analyze the impact of stratospheric volcanic aerosols on the diurnal temperature range (DTR) over Europe using long-term subdaily station records. We compare the results with a 28-member ensemble of European Centre/Hamburg version 5.4 (ECHAM5.4) general circulation model simulations. Eight stratospheric volcanic eruptions during the instrumental period are investigated. Seasonal all- and clear-sky DTR anomalies are compared with contemporary (approximately 20 year) reference periods. Clear sky is used to eliminate cloud effects and better estimate the signal from the direct radiative forcing of the volcanic aerosols. We do not find a consistent effect of stratospheric aerosols on all-sky DTR. For clear skies, we find average DTR anomalies of −0.08°C (−0.13°C) in the observations (in the model), with the largest effect in the second winter after the eruption. Although the clear-sky DTR anomalies from different stations, volcanic eruptions, and seasons show heterogeneous signals in terms of order of magnitude and sign, the significantly negative DTR anomalies (e.g., after the Tambora eruption) are qualitatively consistent with other studies. Referencing with clear-sky DTR anomalies to the radiative forcing from stratospheric volcanic eruptions, we find the resulting sensitivity to be of the same order of magnitude as previously published estimates for tropospheric aerosols during the so-called “global dimming” period (i.e., 1950s to 1980s). Analyzing cloud cover changes after volcanic eruptions reveals an increase in clear-sky days in both data sets. Quantifying the impact of stratospheric volcanic eruptions on clear-sky DTR over Europe provides valuable information for the study of the radiative effect of stratospheric aerosols and for geo-engineering purposes.
Resumo:
BACKGROUND Curcumin (CUR) is a dietary spice and food colorant (E100). Its potent anti-inflammatory activity by inhibiting the activation of Nuclear Factor-kappaB is well established. METHODS The aim of this study was to compare natural purified CUR (nCUR) with synthetically manufactured CUR (sCUR) with respect to their capacity to inhibit detrimental effects in an in vitro model of oral mucositis. The hypothesis was to demonstrate bioequivalence of nCUR and sCUR. RESULTS The purity of sCUR was HPLC-confirmed. Adherence and invasion assays for bacteria to human pharyngeal epithelial cells demonstrated equivalence of nCUR and sCUR. Standard assays also demonstrated an identical inhibitory effect on pro-inflammatory cytokine/chemokine secretion (e.g., interleukin-8, interleukin-6) by Detroit pharyngeal cells exposed to bacterial stimuli. There was bioequivalence of sCUR and nCUR with respect to their antibacterial effects against various pharyngeal species. CONCLUSION nCUR and sCUR are equipotent in in vitro assays mimicking aspects of oral mucositis. The advantages of sCUR include that it is odorless and tasteless, more easily soluble in DMSO, and that it is a single, highly purified molecule, lacking the batch-to-batch variation of CUR content in nCUR. sCUR is a promising agent for the development of an oral anti-mucositis agent.
Resumo:
The spectacular images of Comet 103P/Hartley 2 recorded by the Medium Resolution Instrument (MRI) and High Resolution Instrument (HRI) on board of the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) spacecraft, as the Deep Impact extended mission, revealed that its bi-lobed very active nucleus outgasses volatiles heterogeneously. Indeed, CO2 is the primary driver of activity by dragging out chunks of pure ice out of the nucleus from the sub-solar lobe that appear to be the main source of water in Hartley 2's coma by sublimating slowly as they go away from the nucleus. However, water vapor is released by direct sublimation of the nucleus at the waist without any significant amount of either CO2 or icy grains. The coma structure for a comet with such areas of diverse chemistry differs from the usual models where gases are produced in a homogeneous way from the surface. We use the fully kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J. 685, 659-677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J. 732, 104-120) applied to Comet 103P/Hartley 2 including sublimating icy grains to reproduce the observations made by EPOXI and ground-based measurements. A realistic bi-lobed nucleus with a succession of active areas with different chemistry was included in the model enabling us to study in details the coma of Hartley 2. The different gas production rates from each area were found by fitting the spectra computed using a line-by-line non-LTE radiative transfer model to the HRI observations. The presence of icy grains with long lifetimes, which are pushed anti-sunward by radiation pressure, explains the observed OH asymmetry with enhancement on the night side of the coma.
Resumo:
BACKGROUND AND PURPOSE: High-resolution, vascular MR imaging of the spine region in small animals poses several challenges. The small anatomic features, extravascular diffusion, and low signal-to-noise ratio limit the use of conventional contrast agents. We hypothesize that a long-circulating, intravascular liposomal-encapsulated MR contrast agent (liposomal-Gd) would facilitate visualization of small anatomic features of the perispinal vasculature not visible with conventional contrast agent (gadolinium-diethylene-triaminepentaacetic acid [Gd-DTPA]). METHODS: In this study, high-resolution MR angiography of the spine region was performed in a rat model using a liposomal-Gd, which is known to remain within the blood pool for an extended period. The imaging characteristics of this agent were compared with those of a conventional contrast agent, Gd-DTPA. RESULTS: The liposomal-Gd enabled acquisition of high quality angiograms with high signal-to-noise ratio. Several important vascular features, such as radicular arteries, posterior spinal vein, and epidural venous plexus were visualized in the angiograms obtained with the liposomal agent. The MR angiograms obtained with conventional Gd-DTPA did not demonstrate these vessels clearly because of marked extravascular soft-tissue enhancement that obscured the vasculature. CONCLUSIONS: This study demonstrates the potential benefit of long-circulating liposomal-Gd as a MR contrast agent for high-resolution vascular imaging applications.
Resumo:
Clinical medical librarianship is entering its second decade, but little evaluative data has accrued in the literature. Variations from the original programs and novel new approaches have insured the survival of the program so far. The clinical librarian (CL) forms a vital link between the library and the health care professional, operating as an important information transfer agent. However, to further insure the survival of these vital programs, hard evaluative evidence is needed. The University of Texas Medical Branch (UTMB) at Galveston began a CL Program in 1978/79. An extensive three-year pre/post evaluation study was conducted using a specifically developed evaluation model, which, if adopted by others, will provide the needed comparative data. Both a pilot study, or formative evaluation, and a summative evaluation were conducted. The results of this evaluation confirmed many of the conclusions reported by other CL programs. Eight hypotheses were proposed at the beginning of this study. Data were collected and used to support acceptance or rejection of the null hypotheses, and conclusions were drawn according to the results. Implications relevant to the study conclusions and future trends in medical librarianship are also discussed in the closing chapter.
Resumo:
Corynebacterium diphtheriae is the causative agent of cutaneous and pharyngeal diphtheria in humans. While lethality is certainly caused by diphtheria toxin, corynebacterial colonization may primarily require proteinaceous fibers called pili, which mediate adherence to specific tissues. The type strain of C. diphtheriae possesses three distinct pilus structures, namely the SpaA, SpaD, and SpaH-type pili, which are encoded by three distinct pilus gene clusters. The pilus is assembled onto the bacterial peptidoglycan by a specific transpeptidase enzyme called sortase. Although the SpaA pili are shown to be specific for pharyngeal cells in vitro, little is known about functions of the three pili in bacterial pathogenesis. This is mainly due to lack of in vivo models of corynebacterial infection. As an alternative to mouse models as mice do not have functional receptors for diphtheria toxin, in this study I use Caenorhabditis elegans as a model host for C. diphtheriae. A simple C. elegans model would be beneficial in determining the specific role of each pilus-type and the literature suggests that C. elegans infection model can be used to study a variety of bacterial species giving insight into bacterial virulence and host-pathogen interactions. My study examines the hypothesis that pili and toxin are major virulent determinants of C. diphtheriae in the C. elegans model host.
Resumo:
Water flow and solute transport through soils are strongly influenced by the spatial arrangement of soil materials with different hydraulic and chemical properties. Knowing the specific or statistical arrangement of these materials is considered as a key toward improved predictions of solute transport. Our aim was to obtain two-dimensional material maps from photographs of exposed profiles. We developed a segmentation and classification procedure and applied it to the images of a very heterogeneous sand tank, which was used for a series of flow and transport experiments. The segmentation was based on thresholds of soil color, estimated from local median gray values, and of soil texture, estimated from local coefficients of variation of gray values. Important steps were the correction of inhomogeneous illumination and reflection, and the incorporation of prior knowledge in filters used to extract the image features and to smooth the results morphologically. We could check and confirm the success of our mapping by comparing the estimated with the designed sand distribution in the tank. The resulting material map was used later as input to model flow and transport through the sand tank. Similar segmentation procedures may be applied to any high-density raster data, including photographs or spectral scans of field profiles.
Resumo:
Effects of Combined Bevacizumab and Paclitaxel on Tumor Interstitial Fluid Pressure in a Preclinical Breast Cancer Model by Ricardo H. Alvarez Several mechanisms of cell resistance are often accountable for unsuccessful chemotherapy against cancer. Another reason, which has received increased attention, is the inefficient transport of anticancer drugs into tumor tissue. These impaired transports of chemotherapy into the tumor have been attributed to abnormal microvasculature and to pathologically increased tumor hypertension also called: interstitial fluid pressure (IFP). The pathophysiological processes leading to elevated tumor IFP are poorly understood. Here, in a preclinical breast cancer model, it is argued that a condition of raised IFP is a major factor in preventing optimal access of systemically administered chemotherapy agents. In our experimental model, we used a GILM2 human breast cancer in xenografts; mice were treated with different doses of paclitaxel –a widely used antimicrotubular agent, and bevacizumab –monoclonal antibody against vascular endothelial growth factor (VEGF). The proposed research project is designed to test the hypothesis that paclitaxel in combination with bevacizumab decreases the tumor IPF by restoring tumor permeability and increasing chemotherapy delivery. We demonstrated that the combination of paclitaxel and bevacizumab produced greater tumor control than either agent given alone and this combination reduced the IFP, producing an increment of 75% of apoptosis compared with the control arm. In addition, the intra-tumor paclitaxel quantification by liquid chromatography/Mass Spectrometry (LC/MS) demonstrated that lower dose of both agents showed a synergistic effect compared with high dose of treatment, where there is no significantly increase of paclitaxel into the tumor. These preclinical results are likely to have broad implications for the utility of anti-angiogenic therapies alone and in combination with chemotherapeutic agents.
Resumo:
A three-dimensional model has been proposed that uses Monte Carlo and fast Fourier transform convolution techniques to calculate the dose distribution from a fast neutron beam. This method transports scattered neutrons and photons in the forward, lateral, and backward directions and protons, electrons, and positrons in the forward and lateral directions by convolving energy spread kernels with initial interaction available energy distributions. The primary neutron and photon spectrums have been derived from narrow beam attenuation measurements. The positions and strengths of the effective primary neutron, scattered neutron, and photon sources have been derived from dual ion chamber measurements. The size of the effective primary neutron source has been measured using a copper activation technique. Heterogeneous tissue calculations require a weighted sum of two convolutions for each component since the kernels must be invariant for FFT convolution. Comparisons between calculations and measurements were performed for several water and heterogeneous phantom geometries. ^
Resumo:
Ecosystems are faced with high rates of species loss which has consequences for their functions and services. To assess the effects of plant species diversity on the nitrogen (N) cycle, we developed a model for monthly mean nitrate (NO3-N) concentrations in soil solution in 0-30 cm mineral soil depth using plant species and functional group richness and functional composition as drivers and assessing the effects of conversion of arable land to grassland, spatially heterogeneous soil properties, and climate. We used monthly mean NO3-N concentrations from 62 plots of a grassland plant diversity experiment from 2003 to 2006. Plant species richness (1-60) and functional group composition (1-4 functional groups: legumes, grasses, non-leguminous tall herbs, non-leguminous small herbs) were manipulated in a factorial design. Plant community composition, time since conversion from arable land to grassland, soil texture, and climate data (precipitation, soil moisture, air and soil temperature) were used to develop one general Bayesian multiple regression model for the 62 plots to allow an in-depth evaluation using the experimental design. The model simulated NO3-N concentrations with an overall Bayesian coefficient of determination of 0.48. The temporal course of NO3-N concentrations was simulated differently well for the individual plots with a maximum plot-specific Nash-Sutcliffe Efficiency of 0.57. The model shows that NO3-N concentrations decrease with species richness, but this relation reverses if more than approx. 25 % of legume species are included in the mixture. Presence of legumes increases and presence of grasses decreases NO3-N concentrations compared to mixtures containing only small and tall herbs. Altogether, our model shows that there is a strong influence of plant community composition on NO3-N concentrations.