975 resultados para Healthy buildings
Resumo:
The notion of educating the public through generic healthy eating messages has pervaded dietary health promotion efforts over the years and continues to do so through various media, despite little evidence for any enduring impact upon eating behaviour. There is growing evidence, however, that tailored interventions such as those that could be delivered online can be effective in bringing about healthy dietary behaviour change. The present paper brings together evidence from qualitative and quantitative studies that have considered the public perspective of genomics, nutrigenomics and personalised nutrition, including those conducted as part of the EU-funded Food4Me project. Such studies have consistently indicated that although the public hold positive views about nutrigenomics and personalised nutrition, they have reservations about the service providers' ability to ensure the secure handling of health data. Technological innovation has driven the concept of personalised nutrition forward and now a further technological leap is required to ensure the privacy of online service delivery systems and to protect data gathered in the process of designing personalised nutrition therapies.
Resumo:
BACKGROUND: The task of revising dietary folate recommendations for optimal health is complicated by a lack of data quantifying the biomarker response that reliably reflects a given folate intake.
OBJECTIVE: We conducted a dose-response meta-analysis in healthy adults to quantify the typical response of recognized folate biomarkers to a change in folic acid intake.
DESIGN: Electronic and bibliographic searches identified 19 randomized controlled trials that supplemented with folic acid and measured folate biomarkers before and after the intervention in apparently healthy adults aged ≥18 y. For each biomarker response, the regression coefficient (β) for individual studies and the overall pooled β were calculated by using random-effects meta-analysis.
RESULTS: Folate biomarkers (serum/plasma and red blood cell folate) increased in response to folic acid in a dose-response manner only up to an intake of 400 μg/d. Calculation of the overall pooled β for studies in the range of 50 to 400 μg/d indicated that a doubling of folic acid intake resulted in an increase in serum/plasma folate by 63% (71% for microbiological assay; 61% for nonmicrobiological assay) and red blood cell folate by 31% (irrespective of whether microbiological or other assay was used). Studies that used the microbiological assay indicated lower heterogeneity compared with studies using nonmicrobiological assays for determining serum/plasma (I(2) = 13.5% compared with I(2) = 77.2%) and red blood cell (I(2) = 45.9% compared with I(2) = 70.2%) folate.
CONCLUSIONS: Studies administering >400 μg folic acid/d show no dose-response relation and thus will not yield meaningful results for consideration when generating dietary folate recommendations. The calculated folate biomarker response to a given folic acid intake may be more robust with the use of a microbiological assay rather than alternative methods for blood folate measurement.
Resumo:
RATIONALE: The role bacteria play in the progression of COPD has increasingly been highlighted in recent years. However, the microbial community complexity in the lower airways of patients with COPD is poorly characterised.
OBJECTIVES: To compare the lower airway microbiota in patients with COPD, smokers and non-smokers.
METHODS: Bronchial wash samples from adults with COPD (n=18), smokers with no airways disease (n=8) and healthy individuals (n=11) were analysed by extended-culture and culture-independent Illumina MiSeq sequencing. We determined aerobic and anaerobic microbiota load and evaluated differences in bacteria associated with the three cohorts. Culture-independent analysis was used to determine differences in microbiota between comparison groups including taxonomic richness, diversity, relative abundance, 'core' microbiota and co-occurrence.
MEASUREMENT AND MAIN RESULTS: Extended-culture showed no difference in total load of aerobic and anaerobic bacteria between the three cohorts. Culture-independent analysis revealed that the prevalence of members of Pseudomonas spp. was greater in the lower airways of patients with COPD; however, the majority of the sequence reads for this taxa were attributed to three patients. Furthermore, members of Bacteroidetes, such as Prevotella spp., were observed to be greater in the 'healthy' comparison groups. Community diversity (α and β) was significantly less in COPD compared with healthy groups. Co-occurrence of bacterial taxa and the observation of a putative 'core' community within the lower airways were also observed.
CONCLUSIONS: Microbial community composition in the lower airways of patients with COPD is significantly different to that found in smokers and non-smokers, indicating that a component of the disease is associated with changes in microbiological status.
Resumo:
Seismic risk evaluation of built-up areas involves analysis of the level of earthquake hazard of the region, building vulnerability and exposure. Within this approach that defines seismic risk, building vulnerability assessment assumes great importance, not only because of the obvious physical consequences in the eventual occurrence of a seismic event, but also because it is the one of the few potential aspects in which engineering research can intervene. In fact, rigorous vulnerability assessment of existing buildings and the implementation of appropriate retrofitting solutions can help to reduce the levels of physical damage, loss of life and the economic impact of future seismic events. Vulnerability studies of urban centresshould be developed with the aim of identifying building fragilities and reducing seismic risk. As part of the rehabilitation of the historic city centre of Coimbra, a complete identification and inspection survey of old masonry buildings has been carried out. The main purpose of this research is to discuss vulnerability assessment methodologies, particularly those of the first level, through the proposal and development of a method previously used to determine the level of vulnerability, in the assessment of physical damage and its relationship with seismic intensity.
Resumo:
This article examines the effectiveness of two innovative retrofitting solutions at enhancing the seismic behaviour of a substandard reinforced concrete building tested on a shake table as part of the Pan-European funded project BANDIT. To simulate typical substandard construction, the reinforcement of columns and beam-column joints of the full-scale structure had inadequate detailing. An initial series of shake table tests were carried out to assess the seismic behaviour of the bare building and the effectiveness of a first retrofitting intervention using Post-Tensioned Metal Straps. After these tests, columns and joints were repaired and subsequently retrofitted using a retrofitting solution consisting of Carbon Fibre Reinforced Polymers and Post-Tensioned Metal Straps applied on opposite frames of the building. The building was then subjected to unidirectional and three-dimensional incremental seismic excitations to assess the effectiveness of the two retrofitting solutions at improving the global and local building performance. The article provides details of the above shake table testing programme and retrofitting solutions, and discusses the test results in terms of the observed damage, global damage indexes, performance levels and local strains. It is shown that whilst the original bare building was significantly damaged at a peak ground acceleration (PGA) of 0.15g, the retrofitted building resisted severe threedimensional shake table tests up to PGA=0.60g without failure. Moreover, the retrofitting intervention enhanced the interstorey drift ratio capacity of the 1st and 2nd floors by 160% and 110%, respectively. Therefore, the proposed dual retrofitting system is proven to be very effective for improving the seismic performance of substandard buildings.
Resumo:
This talk addresses the problem of controlling a heating ventilating and air conditioning system with the purpose of achieving a desired thermal comfort level and energy savings. The formulation uses the thermal comfort, assessed using the predicted mean vote (PMV) index, as a restriction and minimises the energy spent to comply with it. This results in the maintenance of thermal comfort and on the minimisation of energy, which in most operating conditions are conflicting goals requiring some sort of optimisation method to find appropriate solutions over time. In this work a discrete model based predictive control methodology is applied to the problem. It consists of three major components: the predictive models, implemented by radial basis function neural networks identifed by means of a multi-objective genetic algorithm [1]; the cost function that will be optimised to minimise energy consumption and provide adequate thermal comfort; and finally the optimisation method, in this case a discrete branch and bound approach. Each component will be described, with a special emphasis on a fast and accurate computation of the PMV indices [2]. Experimental results obtained within different rooms in a building of the University of Algarve will be presented, both in summer [3] and winter [4] conditions, demonstrating the feasibility and performance of the approach. Energy savings resulting from the application of the method are estimated to be greater than 50%.
Resumo:
This paper presents a comparison between a physical model and an artificial neural network model (NN) for temperature estimation inside a building room. Despite the obvious advantages of the physical model for structure optimisation purposes, this paper will test the performance of neural models for inside temperature estimation. The great advantage of the NN model is a big reduction of human effort time, because it is not needed to develop the structural geometry and structural thermal capacities and to simulate, which consumes a great human effort and great computation time. The NN model deals with this problem as a “black box” problem. We describe the use of the Radial Basis Function (RBF), the training method and a multi-objective genetic algorithm for optimisation/selection of the RBF neural network inputs and number of neurons.
Resumo:
Dissertação de Mestrado, Engenharia Eletrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Politicians, industry and the public generally accept the need for energy consumption to be cut to deliver climate change mitigation measures essential for us to avoid climate disaster. For non-domestic fuel users current energy policy has attempted to drive this through rational economic responses to energy cost pressures. This reliance on voluntary action has created an “Energy Inconsistency”, that is a marked difference between energy opportunities that have been proven technically viable, financially rational and retrofit feasible and those actually adopted. Other factors must therefore be involved to influence what appear to be simple carbon and cost saving opportunities. This paper presents a new approach to energy efficiency and consumption in non-domestic buildings, viewing attitudes and behaviours of building owners and users as the key driver of energy consumption. A new framework is proposed as a method to examine the impact of building ownership on the users’ and owners’ abilities to improve energy efficiency and consumption and identify opportunities to overcome the barriers inherent in these ownership structures.
Resumo:
A recent study characterizing bacteriophage populations within human caecal effluent demonstrated the presence of numerous Podoviridae, Siphoviridae and Myoviridae within this material (Hoyles et al., 2014, Res Microbiol 165, 803–812). Further to this work, anaerobic bacteria were isolated on fastidious anaerobe agar from the caecal effluent of a healthy 31-year-old woman. Ten colonies were selected at random, streaked to purity and screened against the remaining caecal effluent (filter-sterilized, 0.45 μm pore size) in an attempt to isolate lytic bacteriophages. Bacteriophages within the effluent [2×105 ± 2.65×103 (n=3) pfu/ml] were active against five of the isolates, all identified by 16S rRNA gene sequence analysis as Klebsiella pneumoniae. One of the five isolates, L4-FAA5, was characterized further and found to be K. pneumoniae subsp. pneumoniae capsule type K2 rmpA+, and was used to propagate a bacteriophage (which we named KLPN1) to purity. Bacteriophage KLPN1 was a member of the Siphoviridae with a rosette-like tail tip and exhibited depolymerase activity, demonstrated by the formation of plaque-surrounding haloes that increased in size over the course of incubation. When screened against a panel of 21 clinical strains representing unknown K. pneumoniae subsp. pneumoniae capsule types and types K1, K2, K5, K20, K54 and K57, KLPN1 infected only K2 strains, but did not exhibit depolymerase activity against these. Whole-genome sequence analysis of KLPN1 showed the bacteriophage to have a genome of 49,037 bp (50.53 GC mol%) comprising 73 predicted ORFs, of which 22 encoded genes associated with structure, host recognition, packaging, DNA replication and cell lysis. The host recognition-associated gene was a potential depolymerase. This is the first report of the isolation of a bacterium–bacteriophage combination from the human caecum, and only the third member of the Siphoviridae known to infect K. pneumoniae subsp. pneumoniae.
Resumo:
A sample of caecal effluent was obtained from a female patient who had undergone a routine colonoscopic examination. Bacteria were isolated anaerobically from the sample, and screened against the remaining filtered caecal effluent in an attempt to isolate bacteriophages (phages). A lytic phage, named KLPN1, was isolated on a strain identified as Klebsiella pneumoniae subsp. pneumoniae (capsular type K2, rmpA+). This Siphoviridae phage presents a rosette-like tail tip and exhibits depolymerase activity, as demonstrated by the formation of plaque-surrounding haloes that increased in size over the course of incubation. When screened against a panel of clinical isolates of K. pneumoniae subsp. pneumoniae, phage KLPN1 was shown to infect and lyse capsular type K2 strains, though it did not exhibit depolymerase activity on such hosts. The genome of KLPN1 was determined to be 49,037 bp (50.53 %GC) in length, encompassing 73 predicted ORFs, of which 23 represented genes associated with structure, host recognition, packaging, DNA replication and cell lysis. On the basis of sequence analyses, phages KLPN1 (GenBank: KR262148) and 1513 (a member of the family Siphoviridae, GenBank: KP658157) were found to be two new members of the genus “Kp36likevirus”.
Resumo:
We report the relationship between patterns of post-awakening salivary melatonin and cortisol secretion in healthy participants (n=51; mean age 21.6 ±5.0 years). Saliva samples were collected within the domestic setting, at 0-, 15-, 30-, and 45-min post-awakening on 2 consecutive typical weekdays. Analyses were undertaken on data with electronically verified sample timing accuracy (55-min delay between awakening and the start of saliva sampling). Melatonin secretion declined linearly by an average of 29% within the first 45-min post-awakening. In contrast, there was a marked 112% surge in cortisol, characteristic of the cortisol awakening response. No day differences in melatonin or cortisol secretion were observed but melatonin concentrations were lower with later awakening. Despite contrasting post-awakening changes in these hormones, there was a lack of relationship between overall levels or patterns of melatonin and cortisol during this period.
Resumo:
In the past few years the interest in coagulase-negative staphylococci (CoNS) has significantly increased in human medicine. CoNS are common commensal colonisers of the human skin, although now also recognised as major nosocomial pathogens. Over the last decades, several studies have been carried out in order to understand the pathogenicity mechanisms of CoNS. The well known determinants in the pathogenesis of CoNS infections are their ability to form biofilms and an exceptional resistance to several antibiotics. Nevertheless, there is a lack of studies regarding the commensal lifestyle of these microorganisms. Additionally, it is now hypothesised that commensal bacteria might be a reservoir of pathogenic determinants. Therefore, the work described throughout this thesis was aimed to perform a phenotypic and genotypic characterisation of different CoNS species isolated from healthy Portuguese individuals. A total of 61 CoNS isolates, comprising 7 different species, were obtained and characterised at the level of biofilm formation and antibiotic susceptibility profiles. According to the results, biofilm formation ability and presence of biofilm-associated genes were commonly found features, highlighting their pivotal role in the colonising lifestyle of CoNS. This study also addressed the correlation between phenotypic and genotypic characteristics of biofilm formation, corroborating and raising questions about the importance of some genes in this process. Moreover, it was observed a great proportion of isolates with decreased susceptibility and multiple resistances to some important antibiotics. A significant association between antibiotic resistance and biofilm formation was also demonstrated, and some hypotheses about the nature of such association were provided. Lastly, the expression patterns of two biofilm-associated genes at two distinct biofilm developmental stages were determined, confirming their importance in the accumulative stage of biofilm formation. Overall, the results presented in this thesis indicate that staphylococcal skin flora might be an important reservoir of potentially pathogenic bacteria and, simultaneously, bring to light new perceptions about the molecular basis of staphylococcal biofilm formation, and the nature of the association between antibiotic resistance and biofilm formation.