972 resultados para Hardware Implementation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to changes in land use over the last century, the physical nature of many streams and rivers in the British Isles has probably changed. In some cases this change may be large for example as a result of flood defence schemes and is easily observed, whilst in other cases altered land use, farming, forestry or urbanization may have resulted in more subtle changes to river features. This working guide draws together a way of assessing habitat in any stream or river and determine sites or reaches on the assessed watercourse that may benefit from habitat improvement schemes. It will determine a method of measuring existing habitat in a broad sense, whilst referring to R and D studies currently being undertaken in this area. A method of prioritising any proposed habitat restoration work will be suggested. The limitations of fisheries improvement schemes in terms of cross functional acceptance (flood defence and conservation) will be examined along with suggested proposals for some example watercourses. The need for pre and post enhancement monitoring will be discussed as will the requirement for maintenance programs on schemes. Finally methods for determining the cost benefits of small schemes will be examined, compared to other currently used enhancement strategies. This will allow small scale revenue schemes to be used to back up pre project cost benefit analysis as required in future capital submissions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CTC algorithm, Consolidated Tree Construction algorithm, is a machine learning paradigm that was designed to solve a class imbalance problem, a fraud detection problem in the area of car insurance [1] where, besides, an explanation about the classification made was required. The algorithm is based on a decision tree construction algorithm, in this case the well-known C4.5, but it extracts knowledge from data using a set of samples instead of a single one as C4.5 does. In contrast to other methodologies based on several samples to build a classifier, such as bagging, the CTC builds a single tree and as a consequence, it obtains comprehensible classifiers. The main motivation of this implementation is to make public and available an implementation of the CTC algorithm. With this purpose we have implemented the algorithm within the well-known WEKA data mining environment http://www.cs.waikato.ac.nz/ml/weka/). WEKA is an open source project that contains a collection of machine learning algorithms written in Java for data mining tasks. J48 is the implementation of C4.5 algorithm within the WEKA package. We called J48Consolidated to the implementation of CTC algorithm based on the J48 Java class.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Solomon Islands has recently developed substantial policy aiming to support inshore fisheries management, conservation, climate change adaptation and ecosystem approaches to resource management. A large body of experience in community based approaches to management has developed but “upscaling” and particularly the implementation of nation-wide approaches has received little attention so far. With the emerging challenges posed by climate change and the need for ecosystem wide and integrated approaches attracting serious donor attention, a national debate on the most effective approaches to implementation is urgently needed. This report discusses potential implementation of “a cost-effective and integrated approach to resource management that is consistent with national policy and needs” based on a review of current policy and institutional structures and examination of a recent case study from Lau, Malaita using stakeholder, transaction and financial cost analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fish and other aquatic animals contribute to the food security of citizens of developing countries, both as a source of income and as a component of healthy diets, yet fishing is not currently captured in most integrated household surveys. This sourcebook provides essential technical guidance on the design of statistical modules and questionnaires aimed at collecting fishery data at the household level. Background on the main policies important to the fishery sector, information on the data needed to analyze issues of policy relevance, and methodology on the construction of survey questions to collect necessary data are also provided. The document is organized to provide essential technical guidance on how to design statistical modules and questionnaires aimed at collecting fishery data at the household level. It includes an overview of the main technical and statistical challenges related to sampling fishery-dependent households. The document starts with an introductory section identifying the potential reasons why fisheries and in particular small-scale fisheries have not been adequately included in national statistical systems in a large number of countries. The report then proposes a succinct review of what is known (and what remains unknown) about small-scale fisheries and their contribution to the livelihoods of households in sub-Saharan Africa. It also provides readers with background on the main policies that are important to the fishery sector, information on the data needed to analyze issues of policy relevance, and methodology on the construction of survey questions to collect necessary data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amostras de DNA são encontradas em fragmentos, obtidos em vestígios de uma cena de crime, ou coletados de amostras de cabelo ou sangue, para testes genéticos ou de paternidade. Para identificar se esse fragmento pertence ou não a uma sequência de DNA, é necessário compará-los com uma sequência determinada, que pode estar armazenada em um banco de dados para, por exemplo, apontar um suspeito. Para tal, é preciso uma ferramenta eficiente para realizar o alinhamento da sequência de DNA encontrada com a armazenada no banco de dados. O alinhamento de sequências de DNA, em inglês DNA matching, é o campo da bioinformática que tenta entender a relação entre as sequências genéticas e suas relações funcionais e parentais. Essa tarefa é frequentemente realizada através de softwares que varrem clusters de base de dados, demandando alto poder computacional, o que encarece o custo de um projeto de alinhamento de sequências de DNA. Esta dissertação apresenta uma arquitetura de hardware paralela, para o algoritmo BLAST, que permite o alinhamento de um par de sequências de DNA. O algoritmo BLAST é um método heurístico e atualmente é o mais rápido. A estratégia do BLAST é dividir as sequências originais em subsequências menores de tamanho w. Após realizar as comparações nessas pequenas subsequências, as etapas do BLAST analisam apenas as subsequências que forem idênticas. Com isso, o algoritmo diminui o número de testes e combinações necessárias para realizar o alinhamento. Para cada sequência idêntica há três etapas, a serem realizadas pelo algoritmo: semeadura, extensão e avaliação. A solução proposta se inspira nas características do algoritmo para implementar um hardware totalmente paralelo e com pipeline entre as etapas básicas do BLAST. A arquitetura de hardware proposta foi implementada em FPGA e os resultados obtidos mostram a comparação entre área ocupada, número de ciclos e máxima frequência de operação permitida, em função dos parâmetros de alinhamento. O resultado é uma arquitetura de hardware em lógica reconfigurável, escalável, eficiente e de baixo custo, capaz de alinhar pares de sequências utilizando o algoritmo BLAST.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controle de processos é uma das muitas aplicações que aproveitam as vantagens do uso da teoria de conjuntos nebulosos. Nesse tipo de aplicação, o controlador é, geralmente, embutido no dispositivo controlado. Esta dissertação propõe uma arquitetura reconfigurável eficiente para controladores nebulosos embutidos. A arquitetura é parametrizável, de tal forma, que permite a configuração do controlador para que este possa ser usado na implementação de qualquer aplicação ou modelo nebuloso. Os parâmetros de configuração são: o número de variáveis de entrada (N); o número de variáveis de saída (M); o número de termos linguísticos (Q); e o número total de regras (P). A arquitetura proposta proporciona também a configuração das características que definem as regras e as funções de pertinência de cada variável de entrada e saída, permitindo a escalabilidade do projeto. A composição das premissas e consequentes das regras são configuráveis, de acordo com o controlador nebuloso objetivado. A arquitetura suporta funções de pertinência triangulares, mas pode ser estendida para aceitar outras formas, do tipo trapezoidal, sem grandes modificações. As características das funções de pertinência de cada termo linguístico, podem ser ajustadas de acordo com a definição do controlador nebuloso, permitindo o uso de triângulos. Virtualmente, não há limites máximos do número de regras ou de termos linguísticos empregados no modelo, bem como no número de variáveis de entrada e de saída. A macro-arquitetura do controlador proposto é composta por N blocos de fuzzificação, 1 bloco de inferência, M blocos de defuzzificação e N blocos referentes às características das funções de pertinência. Este último opera apenas durante a configuração do controlador. A função dos blocos de fuzzificação das variáveis de entrada é executada em paralelo, assim como, os cálculos realizados pelos blocos de defuzzificação das variáveis de saída. A paralelização das unidades de fuzzificação e defuzzificação permite acelerar o processo de obtenção da resposta final do controlador. Foram realizadas várias simulações para verificar o correto funcionamento do controlador, especificado em VHDL. Em um segundo momento, para avaliar o desempenho da arquitetura, o controlador foi sintetizado em FPGA e testado em seis aplicações para verificar sua reconfigurabilidade e escalabilidade. Os resultados obtidos foram comparados com os do MATLAB em cada aplicação implementada, para comprovar precisão do controlador.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Otimização por Enxame de Partículas (PSO, Particle Swarm Optimization) é uma técnica de otimização que vem sendo utilizada na solução de diversos problemas, em diferentes áreas do conhecimento. Porém, a maioria das implementações é realizada de modo sequencial. O processo de otimização necessita de um grande número de avaliações da função objetivo, principalmente em problemas complexos que envolvam uma grande quantidade de partículas e dimensões. Consequentemente, o algoritmo pode se tornar ineficiente em termos do desempenho obtido, tempo de resposta e até na qualidade do resultado esperado. Para superar tais dificuldades, pode-se utilizar a computação de alto desempenho e paralelizar o algoritmo, de acordo com as características da arquitetura, visando o aumento de desempenho, a minimização do tempo de resposta e melhoria da qualidade do resultado final. Nesta dissertação, o algoritmo PSO é paralelizado utilizando três estratégias que abordarão diferentes granularidades do problema, assim como dividir o trabalho de otimização entre vários subenxames cooperativos. Um dos algoritmos paralelos desenvolvidos, chamado PPSO, é implementado diretamente em hardware, utilizando uma FPGA. Todas as estratégias propostas, PPSO (Parallel PSO), PDPSO (Parallel Dimension PSO) e CPPSO (Cooperative Parallel PSO), são implementadas visando às arquiteturas paralelas baseadas em multiprocessadores, multicomputadores e GPU. Os diferentes testes realizados mostram que, nos problemas com um maior número de partículas e dimensões e utilizando uma estratégia com granularidade mais fina (PDPSO e CPPSO), a GPU obteve os melhores resultados. Enquanto, utilizando uma estratégia com uma granularidade mais grossa (PPSO), a implementação em multicomputador obteve os melhores resultados.