962 resultados para Haptoglobin polymorphism
Resumo:
The key requirements for high-throughput single-nucleotide polymorphism (SNP) typing of DNA samples in large-scale disease case-control studies are automatability, simplicity, and robustness, coupled with minimal cost. In this paper we describe a fluorescence technique for the detection of SNPs that have been amplified by using the amplification refractory mutation system (ARMS)-PCR procedure. Its performance was evaluated using 32 sequence-specific primer mixes to assign the HLA-DRB alleles to 80 lymphoblastoid cell line DNAs chosen from our database for their diversity. All had been typed previously by alternative methods, either direct sequencing or gel electrophoresis. We believe the detection system that we call AMDI (alkaline-mediated differential interaction) satisfies the above criteria and is suitable for general high-throughput SNP typing.
Resumo:
BRCA1 and BRCA2 carriers are at increased risk for both breast and ovarian cancer, but estimates of lifetime risk vary widely, suggesting their penetrance is modified by other genetic and/or environmental factors. The BRCA1 and BRCA2 proteins function in DNA repair in conjunction with RAD51. A preliminary report suggested that a single nucleotide polymorphism in the 5′ untranslated region of RAD51 (135C/G) increases breast cancer risk in BRCA1 and BRCA2 carriers. To investigate this effect we studied 257 female Ashkenazi Jewish carriers of one of the common BRCA1 (185delAG, 5382insC) or BRCA2 (6174delT) mutations. Of this group, 164 were affected with breast and/or ovarian cancer and 93 were unaffected. RAD51 genotyping was performed on all subjects. Among BRCA1 carriers, RAD51-135C frequency was similar in healthy and affected women [6.1% (3 of 49) and 9.9% (12 of 121), respectively], and RAD-135C did not influence age of cancer diagnosis [Hazard ratio (HR) = 1.18 for disease in RAD51-135C heterozygotes, not significant]. However, in BRCA2 carriers, RAD51-135C heterozygote frequency in affected women was 17.4% (8 of 46) compared with 4.9% (2 of 41) in unaffected women (P = 0.07). Survival analysis in BRCA2 carriers showed RAD51-135C increased risk of breast and/or ovarian cancer with an HR of 4.0 [95% confidence interval 1.6–9.8, P = 0.003]. This effect was largely due to increased breast cancer risk with an HR of 3.46 (95% confidence interval 1.3–9.2, P = 0.01) for breast cancer in BRCA2 carriers who were RAD51-135C heterozygotes. RAD51 status did not affect ovarian cancer risk. These results show RAD51-135C is a clinically significant modifier of BRCA2 penetrance, specifically in raising breast cancer risk at younger ages.
Resumo:
In many species, the Y (or W) chromosome carries relatively few functional genes. This observation motivates the null hypothesis that the Y will be a minor contributor to genetic variation for fitness. Previous data and theory supported the null hypothesis, but evidence presented here shows that the Y of Drosophila melanogaster is a major determinant of a male's total fitness, with standing genetic variation estimated to be 68% of that of an entire X/autosome genomic haplotype. Most Y-linked genes are expressed during spermatogenesis, and correspondingly, we found that the Y influences fitness primarily through its effect on a male's reproductive success (sperm competition and/or mating success) rather than his egg-to-adult viability. But the fitness of a Y highly depended on the genetic makeup of its bearer, reverting from high to low in different genetic backgrounds. This pattern leads to large epistatic (inconsistent among backgrounds) but no additive (consistent among backgrounds) Y-linked genetic variance for fitness. On a microevolutionary scale, the observed large epistatic variation on the Y substantially reduces heritable variation for fitness among males, and on a macroevolutionary scale, the Y produces strong selection for genomic rearrangements that move interacting genes onto the nonrecombining region of the Y.
Resumo:
The orchid Dactylorhiza sambucina shows a stable and dramatic flower-color polymorphism, with both yellow- and purple-flowered individuals present in natural populations throughout the range of the species in Europe. The evolutionary significance of flower-color polymorphisms found in many rewardless orchid species has been discussed at length, but the mechanisms responsible for their maintenance remain unclear. Laboratory experiments have suggested that behavioral responses by pollinators to lack of reward availability might result in a reproductive advantage for rare-color morphs. Consequently, we performed an experiment varying the relative frequency of the two color morphs of D. sambucina to test whether rare morph advantage acted in the natural habitat of the species. We show here clear evidence from this manipulative experiment that rare-color morphs have reproductive advantage through male and female components. This is the first demonstration, to our knowledge, that negative frequency-dependent selection through pollinator preference for rare morphs can cause the maintenance of a flower-color polymorphism.
Resumo:
Several cases have been described in the literature where genetic polymorphism appears to be shared between a pair of species. Here we examine the distribution of times to random loss of shared polymorphism in the context of the neutral Wright–Fisher model. Order statistics are used to obtain the distribution of times to loss of a shared polymorphism based on Kimura’s solution to the diffusion approximation of the Wright–Fisher model. In a single species, the expected absorption time for a neutral allele having an initial allele frequency of ½ is 2.77 N generations. If two species initially share a polymorphism, that shared polymorphism is lost as soon as either of two species undergoes fixation. The loss of a shared polymorphism thus occurs sooner than loss of polymorphism in a single species and has an expected time of 1.7 N generations. Molecular sequences of genes with shared polymorphism may be characterized by the count of the number of sites that segregate in both species for the same nucleotides (or amino acids). The distribution of the expected numbers of these shared polymorphic sites also is obtained. Shared polymorphism appears to be more likely at genetic loci that have an unusually large number of segregating alleles, and the neutral coalescent proves to be very useful in determining the probability of shared allelic lineages expected by chance. These results are related to examples of shared polymorphism in the literature.
Resumo:
Two isoforms of the human growth hormone receptor (hGHR), which differ in the presence (hGHRwt) or absence (hGHRd3) of exon 3, are expressed in the placenta. Specifically, three expression patterns are observed: only hGHRwt, only hGHRd3, or an approximately 1:1 combination of both isoforms. We investigated several potential regulatory mechanisms which might account for the expression of the hGHR isoforms. The frequency of hGHRd3 expression did not change when placentas from differing stages of gestation were examined, suggesting splicing was not developmentally regulated. However, when hGHR isoform expression patterns were examined in each component of a given placenta, it was evident that alternative splicing of exon 3 is individual-specific. Surprisingly, the individual-specific regulation of hGHR isoforms appears to be the result of a polymorphism in the hGHR gene. We analyzed hGHRwt and hGHRd3 expression in Hutterite pedigrees, and our results are consistent with a simple Mendelian inheritance of two differing alleles in which exon 3 is spliced in an "all-or-none" fashion. We conclude the alternative splicing of exon 3 in hGHR transcripts is the result of an unusual polymorphism which significantly alters splicing of the hGHR transcript and that the relatively high frequency (approximately 10%) of homozygous hGHRd3 expression suggests the possibility it may play a role in polygenic determined events.