932 resultados para Hair removal
Resumo:
Various environmental factors may influence the foraging behaviour of seed dispersers which could ultimately affect the seed dispersal process. We examined whether moonlight levels and the presence or absence of rodentshelter affect rodentseedremoval (rate, handling time and time of removal) and seedselection (size and species) among seven oak species. The presence or absence of safe microhabitats was found to be more important than moonlight levels in the removal of seeds. Bright moonlight caused a different temporal distribution of seedremoval throughout the night but only affected the overall removal rates in open microhabitats. Seeds were removed more rapidly in open microhabitat (regardless of the moon phase), decreasing the time allocated to seed discrimination and translocation. Only in open microhabitats did increasing levels of moonlight decrease the time allocated to selection and removal of seeds. As a result, a more precise seedselection was made under shelter, owing to lower levels of predation risk. Rodent ranking preference for species was identical between full/new moon in shelter but not in open microhabitats. For all treatments, species selection by rodents was much stronger than size selection. Nevertheless, heavy seeds, which require more energy and time to be transported, were preferentially removed under shelter, where there is no time restriction to move the seeds. Our findings reveal that seedselection is safety dependent and, therefore, microhabitats in which seeds are located (sheltered versus exposed) and moonlight levels in open areas should be taken into account in rodent food selection studies.
Resumo:
This paper presents a methodology for the incorporation of a Virtual Reality development applied to the teaching of manufacturing processes, namely the group of machining processes in numerical control of machine tools. The paper shows how it is possible to supplement the teaching practice through virtual machine-tools whose operation is similar to the 'real' machines while eliminating the risks of use for both users and the machines.
Resumo:
The magnetoencephalogram (MEG) is contaminated with undesired signals, which are called artifacts. Some of the most important ones are the cardiac and the ocular artifacts (CA and OA, respectively), and the power line noise (PLN). Blind source separation (BSS) has been used to reduce the influence of the artifacts in the data. There is a plethora of BSS-based artifact removal approaches, but few comparative analyses. In this study, MEG background activity from 26 subjects was processed with five widespread BSS (AMUSE, SOBI, JADE, extended Infomax, and FastICA) and one constrained BSS (cBSS) techniques. Then, the ability of several combinations of BSS algorithm, epoch length, and artifact detection metric to automatically reduce the CA, OA, and PLN were quantified with objective criteria. The results pinpointed to cBSS as a very suitable approach to remove the CA. Additionally, a combination of AMUSE or SOBI and artifact detection metrics based on entropy or power criteria decreased the OA. Finally, the PLN was reduced by means of a spectral metric. These findings confirm the utility of BSS to help in the artifact removal for MEG background activity.
Resumo:
In this paper the hardware implementation of an inner hair cell model is presented. Main features of the design are the use of Meddis’ transduction structure and the methodology for Design with Reusability. Which allows future migration to new hardware and design refinements for speech processing and custom-made hearing aids
Resumo:
A novel concept for active space debris removal known as Ion Beam Shepherd (IBS) which has been recently presented by our group is investigated. The concept makes use of a highly collimated ion beam to exert the necessary force on a generic debris to modify its orbit and/or attitude from a safe distance in a controlled manner, without the need of docking. After describing the main characteristics of the IBS system, some of the key aspects of thruster plasma and its interaction with the debris are studied, namely, (1) the modeling of the expansion of an plasma beam, based on the quasi-selfsimilarity exhibited by hypersonic plumes, (2) the characterization of the force and torque exerted upon the target debris, and (3) a preliminary evaluation of other plasma-body interactions.
Resumo:
Among the many advantages of the recently proposed ion beam shepherd (IBS) debris removal technique is the capability to deal with multiple targets in a single mission. A preliminary analysis is here conducted in order to estimate the cost in terms of spacecraft mass and total mission time to remove multiple large-size upper stages of the Zenit family. Zenit-2 upper stages are clustered at 71 degrees inclination around 850 km altitude in low Earth orbit. It is found that a removal of two targets per year is feasible with a modest size spacecraft. The most favorable combinations of targets are outlined.
Resumo:
The filling-withdrawal process of a long liquid bridge is analyzed using a one-dimensional linearized model for the dynamics of the liquid column. To carry out this study, a well-known standard operational method (Laplace transform) has been used, and time variation of both liquid velocity field and interface shape are obtained.
Resumo:
The dynamic responses of the hearing organ to acoustic overstimulation were investigated using the guinea pig isolated temporal bone preparation. The organ was loaded with the fluorescent Ca2+ indicator Fluo-3, and the cochlear electric responses to low-level tones were recorded through a microelectrode in the scala media. After overstimulation, the amplitude of the cochlear potentials decreased significantly. In some cases, rapid recovery was seen with the potentials returning to their initial amplitude. In 12 of 14 cases in which overstimulation gave a decrease in the cochlear responses, significant elevations of the cytoplasmic [Ca2+] in the outer hair cells were seen. [Ca2+] increases appeared immediately after terminating the overstimulation, with partial recovery taking place in the ensuing 30 min in some preparations. Such [Ca2+] changes were not seen in preparations that were stimulated at levels that did not cause an amplitude change in the cochlear potentials. The overstimulation also gave rise to a contraction, evident as a decrease of the width of the organ of Corti. The average contraction in 10 preparations was 9 μm (SE 2 μm). Partial or complete recovery was seen within 30–45 min after the overstimulation. The [Ca2+] changes and the contraction are likely to produce major functional alterations and consequently are suggested to be a factor contributing strongly to the loss of function seen after exposure to loud sounds.
Resumo:
The Brn-3 subfamily of POU–domain transcription factor genes consists of three highly homologous members—Brn-3a, Brn-3b, and Brn-3c—that are expressed in sensory neurons and in a small number of brainstem nuclei. This paper describes the role of Brn-3c in auditory and vestibular system development. In the inner ear, the Brn-3c protein is found only in auditory and vestibular hair cells, and the Brn-3a and Brn-3b proteins are found only in subsets of spiral and vestibular ganglion neurons. Mice carrying a targeted deletion of the Brn-3c gene are deaf and have impaired balance. These defects reflect a complete loss of auditory and vestibular hair cells during the late embryonic and early postnatal period and a secondary loss of spiral and vestibular ganglion neurons. Together with earlier work demonstrating a loss of trigeminal ganglion neurons and retinal ganglion cells in mice carrying targeted disruptions in the Brn-3a and Brn-3b genes, respectively, the Brn-3c phenotype reported here demonstrates that each of the Brn-3 genes plays distinctive roles in the somatosensory, visual, and auditory/vestibular systems.
Resumo:
Acknowledgements The work was in part funded by UK Medical Research Council project grant G0601253 to G.S.B. and R.W.B.
Resumo:
Acknowledgments This work was funded by an Arts and Humanities Research Council (AH/K006029/1) grant awarded to Rick Knecht, Kate Britton and Charlotta Hillerdal (Aberdeen); an AHRC-LabEx award (AH/N504543/1) to KB, RK, Keith Dobney (Liverpool) and Isabelle Sidéra (Nanterre); the Carnegie Trust to the Universities of Scotland (travel grant to KB); and the Max Planck Institute for Evolutionary Anthropology. The onsite collection of samples was carried out by staff and students from the University of Aberdeen, volunteer excavators and the residents of Quinhagak. We had logistical and planning support for fieldwork by the Qanirtuuq Incorporated, Quinhagak, Alaska, and the people of Quinhagak, who we also thank for sampling permissions. Special thanks to Warren Jones and Qanirtuuq Incorporated (especially Michael Smith and Lynn Church), and to all Nunalleq project team members, in Aberdeen and at other institutions, particularly Charlotta Hillerdal and Edouard Masson-Maclean (Aberdeen) for comments on earlier versions of this manuscript, and also to Véronique Forbes, Ana Jorge, Carly Ameen and Ciara Mannion (Aberdeen) for their inputs. Thanks also to Michelle Alexander (York). Finally, thank you to Ian Scharlotta (Alberta) for inviting us to contribute to this special issue, to the Editor, and to three anonymous reviewers, whose suggestions and recommended changes to an earlier version of this manuscript greatly improved the paper.
Resumo:
The mechanoelectrical-transduction channel of the hair cell is permeable to both monovalent and divalent cations. Because Ca2+ entering through the transduction channel serves as a feedback signal in the adaptation process that sets the channel’s open probability, an understanding of adaptation requires estimation of the magnitude of Ca2+ influx. To determine the Ca2+ current through the transduction channel, we measured extracellular receptor currents with transepithelial voltage-clamp recordings while the apical surface of a saccular macula was bathed with solutions containing various concentrations of K+, Na+, or Ca2+. For modest concentrations of a single permeant cation, Ca2+ carried much more receptor current than did either K+ or Na+. For higher cation concentrations, however, the flux of Na+ or K+ through the transduction channel exceeded that of Ca2+. For mixtures of Ca2+ and monovalent cations, the receptor current displayed an anomalous mole-fraction effect, which indicates that ions interact while traversing the channel’s pore. These results demonstrate not only that the hair cell’s transduction channel is selective for Ca2+ over monovalent cations but also that Ca2+ carries substantial current even at low Ca2+ concentrations. At physiological cation concentrations, Ca2+ flux through transduction channels can change the local Ca2+ concentration in stereocilia in a range relevant for the control of adaptation.
Resumo:
When a hair cell is stimulated by positive deflection of its hair bundle, increased tension in gating springs opens transduction channels, permitting cations to enter stereocilia and depolarize the cell. Ca2+ is thought to be required in mechanoelectrical transduction, for exposure of hair bundles to Ca2+ chelators eliminates responsiveness by disrupting tip links, filamentous interstereociliary connections that probably are the gating springs. Ca2+ also participates in adaptation to stimuli by controlling the activity of a molecular motor that sets gating-spring tension. Using a flexible glass fiber to measure hair-bundle stiffness, we investigated the effect of Ca2+ concentration on stiffness before and after the disruption of gating springs. The stiffness of intact hair bundles depended nonmonotonically on the extracellular Ca2+ concentration; the maximal stiffness of ≈1200 μN⋅m−1 occurred when bundles were bathed in solutions containing 250 μM Ca2+, approximately the concentration found in frog endolymph. For cells exposed to solutions with sufficient chelator capacity to reduce the Ca2+ concentration below ≈100 nM, hair-bundle stiffness fell to ≈200 μN⋅m−1 and no longer exhibited Ca2+-dependent changes. Because cells so treated lost mechanoelectrical transduction, we attribute the reduction in bundle stiffness to tip-link disruption. The results indicate that gating springs are not linearly elastic; instead, they stiffen with increased strain, which rises with adaptation-motor activity at the physiological extracellular Ca2+ concentration.
Resumo:
DNA damage generated by oxidant byproducts of cellular metabolism has been proposed as a key factor in cancer and aging. Oxygen free radicals cause predominantly base damage in DNA, and the most frequent mutagenic base lesion is 7,8-dihydro-8-oxoguanine (8-oxoG). This altered base can pair with A as well as C residues, leading to a greatly increased frequency of spontaneous G·C→T·A transversion mutations in repair-deficient bacterial and yeast cells. Eukaryotic cells use a specific DNA glycosylase, the product of the OGG1 gene, to excise 8-oxoG from DNA. To assess the role of the mammalian enzyme in repair of DNA damage and prevention of carcinogenesis, we have generated homozygous ogg1−/− null mice. These animals are viable but accumulate abnormal levels of 8-oxoG in their genomes. Despite this increase in potentially miscoding DNA lesions, OGG1-deficient mice exhibit only a moderately, but significantly, elevated spontaneous mutation rate in nonproliferative tissues, do not develop malignancies, and show no marked pathological changes. Extracts of ogg1 null mouse tissues cannot excise the damaged base, but there is significant slow removal in vivo from proliferating cells. These findings suggest that in the absence of the DNA glycosylase, and in apparent contrast to bacterial and yeast cells, an alternative repair pathway functions to minimize the effects of an increased load of 8-oxoG in the genome and maintain a low endogenous mutation frequency.
Resumo:
Retinoids, vitamin A (retinol) and its metabolic derivatives, are required for normal vertebrate development. In murine embryonic stem (ES) cells, which remain undifferentiated when cultured in the presence of LIF (leukemia inhibitory factor), little metabolism of exogenously added retinol takes place. After LIF removal, ES cells metabolize exogenously added retinol to 4-hydroxyretinol and 4-oxoretinol and concomitantly differentiate. The conversion of retinol to 4-oxoretinol is a high-capacity reaction because most of the exogenous retinol is metabolized rapidly, even when cells are exposed to physiological (≈1 μM) concentrations of retinol in the medium. No retinoic acid or 4-oxoRA synthesis from retinol was detected in ES cells cultured with or without LIF. The cytochrome P450 enzyme CYP26 (retinoic acid hydroxylase) is responsible for the metabolism of retinol to 4-oxoretinol, and CYP26 mRNA is greatly induced (>15-fold) after LIF removal. Concomitant with the expression of CYP26, differentiating ES cells grown in the absence of LIF activate the expression of the differentiation marker gene FGF-5 whereas the expression of the stem cell marker gene FGF-4 decreases. The strong correlation between the production of polar metabolites of retinol and the differentiation of ES cells upon removal of LIF suggests that one important action of LIF in these cells is to prevent retinol metabolism to biologically active, polar metabolites such as 4-oxoretinol.