918 resultados para HYPERON RESONANCES
Resumo:
X-band electron spin resonance (ESR) measurements have been performed on a conducting free-standing film of polyaniline plasticized and protonated with di-n-dodecyl ester of sulfosuccinic acid (DDoESSA). The magnetic field was applied parallel and perpendicular to the plane of the film. At around 75 K a transition is observed from Pauli susceptibility to a localized state in which the spin 1/2 polarons behave as spin 1/2 dimers. A rough estimation of the intradimer and interdimer exchange constants is obtained. Below 5 K, ESR data reveal a weak ferromagnetism with the Dzyaloshinskii-Moriya vector mainly oriented in the plane of the film. The existence of a relatively well-defined n-fold axis along the chain direction in the crystalline regions confers a symmetry compatible with such analysis. © 2013 IOP Publishing Ltd.
Resumo:
Aims.We investigate the dynamics of pebbles immersed in a gas disk interacting with a planet on an eccentric orbit. The model has a prescribed gap in the disk around the location of the planetary orbit, as is expected for a giant planet with a mass in the range of 0.1-1 Jupiter masses. The pebbles with sizes in the range of 1 cm to 3 m are placed in a ring outside of the giant planet orbit at distances between 10 and 30 planetary Hill radii. The process of the accumulation of pebbles closer to the gap edge, its possible implication for the planetary accretion, and the importance of the mass and the eccentricity of the planet in this process are the motivations behind the present contribution. Methods. We used the Bulirsch-Stoer numerical algorithm, which is computationally consistent for close approaches, to integrate the Newtonian equations of the planar (2D), elliptical restricted three-body problem. The angular velocity of the gas disk was determined by the appropriate balance between the gravity, centrifugal, and pressure forces, such that it is sub-Keplerian in regions with a negative radial pressure gradient and super-Keplerian where the radial pressure gradient is positive. Results. The results show that there are no trappings in the 1:1 resonance around the L 4 and L5 Lagrangian points for very low planetary eccentricities (e2 < 0.07). The trappings in exterior resonances, in the majority of cases, are because the angular velocity of the disk is super-Keplerian in the gap disk outside of the planetary orbit and because the inward drift is stopped. Furthermore, the semi-major axis location of such trappings depends on the gas pressure profile of the gap (depth) and is a = 1.2 for a planet of 1 MJ. A planet on an eccentric orbit interacts with the pebble layer formed by these resonances. Collisions occur and become important for planetary eccentricity near the present value of Jupiter (e 2 = 0.05). The maximum rate of the collisions onto a planet of 0.1 MJ occurs when the pebble size is 37.5 cm ≤ s < 75 cm; for a planet with the mass of Jupiter, it is15 cm ≤ s < 30 cm. The accretion stops when the pebble size is less than 2 cm and the gas drag dominates the motion. © 2013 ESO.
Resumo:
(10) Hygiea is the fourth largest asteroid of the main belt, by volume and mass, and it is the largest member of its family, that is made mostly by low-albedo, C-type asteroids, typical of the outer main belt. Like many other large families, it is associated with a 'halo' of objects, that extends far beyond the boundary of the core family, as detected by traditional hierarchical clustering methods (HCM) in proper element domains. Numerical simulations of the orbital evolution of family members may help in estimating the family and halo family age, and the original ejection velocity field. But, in order to minimize the errors associated with including too many interlopers, it is important to have good estimates of family membership that include available data on local asteroid taxonomy, geometrical albedo and local dynamics. For this purpose, we obtained synthetic proper elements and frequencies of asteroids in the Hygiea orbital region, with their errors. We revised the current knowledge on asteroid taxonomy, including Sloan Digital Sky Survey-Moving Object Catalog 4th release (SDSS-MOC 4) data, and geometric albedo data from Wide-field Infrared Survey Explorer (WISE) and Near-Earth Object WISE (NEOWISE). We identified asteroid family members using HCM in the domain of proper elements (a, e, sin (i)) and in the domains of proper frequencies most appropriate to study diffusion in the local web of secular resonances, and eliminated possible interlopers based on taxonomic and geometrical albedo considerations. To identify the family halo, we devised a new hierarchical clustering method in an extended domain that includes proper elements, principal components PC1, PC2 obtained based on SDSS photometric data and, for the first time, WISE and NEOWISE geometric albedo. Data on asteroid size distribution, light curves and rotations were also revised for the Hygiea family. The Hygiea family is the largest group in its region, with two smaller families in proper element domain and 18 families in various frequencies domains identified in this work for the first time. Frequency groups tend to extend vertically in the (a, sin (i)) plane and cross not only the Hygiea family but also the near C-type families of Themis and Veritas, causing a mixture of objects all of relatively low albedo in the Hygiea family area. A few high-albedo asteroids, most likely associated with the Eos family, are also present in the region. Finally, the new multidomains hierarchical clustering method allowed us to obtain a good and robust estimate of the membership of the Hygiea family halo, quite separated from other asteroids families halo in the region, and with a very limited (about 3 per cent) presence of likely interlopers. © 2013 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
Studies of the structure of excited baryons are key factors to the N* program at Jefferson Lab (JLab). Within the first year of data taking with the Hall B CLAS12 detector following the 12 GeV upgrade, a dedicated experiment will aim to extract the N* electrocouplings at high photon virtualities Q 2. This experiment will allow exploration of the structure of N* resonances at the highest photon virtualities ever achieved, with a kinematic reach up to Q2 = 12 GeV2. This high-Q 2 reach will make it possible to probe the excited nucleon structures at distance scales ranging from where effective degrees of freedom, such as constituent quarks, are dominant through the transition to where nearly massless bare-quark degrees of freedom are relevant. In this document, we present a detailed description of the physics that can be addressed through N* structure studies in exclusive meson electroproduction. The discussion includes recent advances in reaction theory for extracting N* electrocouplings from meson electroproduction off protons, along with Quantum Chromodynamics (QCD)-based approaches to the theoretical interpretation of these fundamental quantities. This program will afford access to the dynamics of the nonperturbative strong interaction responsible for resonance formation, and will be crucial in understanding the nature of confinement and dynamical chiral symmetry breaking in baryons, and how excited nucleons emerge from QCD. © 2013 World Scientific Publishing Company.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - FEG
Resumo:
Pós-graduação em Física - FEG
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Física - IFT