821 resultados para HUMAN BRAIN ACTIVITY
Resumo:
High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a clinical MRI scanner. Also, the limited studies which optimized DSI in a clinical setting, did not involve a comparison against physical phantoms. Finally, there is lack of consensus on the necessary pre- and post-processing steps in DSI; and ground truth diffusion fiber phantoms are not yet standardized. Therefore, the aims of this dissertation were to design and construct novel diffusion phantoms, employ post-processing techniques in order to systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and analysis. Phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° and 45° respectively along with a phantom with three crossing fibers at 60°, using novel hollow plastic capillaries and novel placeholders, were constructed. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous signal, and absence of air bubbles. Also, a technique to deconvolve the response function of an individual peak from the overall ODF was implemented, in addition to other DSI post-processing steps. This technique greatly improved the angular resolution of the otherwise unresolvable peaks in a crossing fiber ODF. The effects of DSI acquisition parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner were studied and quantified using the developed phantoms. With a high angular direction sampling and reasonable levels of SNR, quantification of a crossing region in the 90°, 45° and 60° phantoms resulted in a successful detection of angular information with mean ± SD of 86.93°±2.65°, 44.61°±1.6° and 60.03°±2.21° respectively, while simultaneously enhancing the ODFs in regions containing single fibers. For the applicability of these validated methodologies in DSI, improvement in ODFs and fiber tracking from known crossing fiber regions in normal human subjects were demonstrated; and an in-house software package in MATLAB which streamlines the data reconstruction and post-processing for DSI, with easy to use graphical user interface was developed. In conclusion, the phantoms developed in this dissertation offer a means of providing ground truth for validation of reconstruction and tractography algorithms of various diffusion models (including DSI). Also, the deconvolution methodology (when applied as an additional DSI post-processing step) significantly improved the angular accuracy of the ODFs obtained from DSI, and should be applicable to ODFs obtained from the other high angular resolution diffusion imaging techniques.
Resumo:
A common pathological hallmark of most neurodegenerative disorders is the presence of protein aggregates in the brain. Understanding the regulation of aggregate formation is thus important for elucidating disease pathogenic mechanisms and finding effective preventive avenues and cures. Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, is a selective neurodegenerative disorder predominantly affecting motor neurons. The majority of ALS cases are sporadic, however, mutations in superoxide dismutase 1 (SOD1) are responsible for about 20% of familial ALS (fALS). Mutated SOD1 proteins are prone to misfold and form protein aggregates, thus representing a good candidate for studying aggregate formation. The long-term goal of this project is to identify regulators of aggregate formation by mutant SOD1 and other ALS-associated disease proteins. The specific aim of this thesis project is to assess the possibility of using the well-established Drosophila model system to study aggregation by human SOD1 (hSOD1) mutants. To this end, using wild type and the three mutant hSOD1 (A4V, G85R and G93A) most commonly found among fALS, I have generated 16 different SOD1 constructs containing either eGFP or mCherry in-frame fluorescent reporters, established and tested both cell- and animal-based Drosophila hSOD1 models. The experimental strategy allows for clear visualization of ectopic hSOD1 expression as well as versatile co-expression schemes to fully investigate protein aggregation specifically by mutant hSOD1. I have performed pilot cell-transfection experiments and verified induced expression of hSOD1 proteins. Using several tissue- or cell type-specific Gal4 lines, I have confirmed the proper expression of hSOD1 from established transgenic fly lines. Interestingly, in both Drosophila S2 cells and different fly tissues including the eye and motor neurons, robust aggregate formation by either wild type or mutant hSOD1 proteins was not observed. These preliminary observations suggest that Drosophila might not be a good experimental organism to study aggregation and toxicity of mutant hSOD1 protein. Nevertheless this preliminary conclusion implies the potential existence of a potent protective mechanism against mutant hSOD1 aggregation and toxicity in Drosophila. Thus, results from my SOD1-ALS project in Drosophila will help future studies on how to best employ this classic model organism to study ALS and other human brain degenerative diseases.
Resumo:
The electroencephalograph (EEG) signal is one of the most widely used signals in the biomedicine field due to its rich information about human tasks. This research study describes a new approach based on i) build reference models from a set of time series, based on the analysis of the events that they contain, is suitable for domains where the relevant information is concentrated in specific regions of the time series, known as events. In order to deal with events, each event is characterized by a set of attributes. ii) Discrete wavelet transform to the EEG data in order to extract temporal information in the form of changes in the frequency domain over time- that is they are able to extract non-stationary signals embedded in the noisy background of the human brain. The performance of the model was evaluated in terms of training performance and classification accuracies and the results confirmed that the proposed scheme has potential in classifying the EEG signals.
Resumo:
During sentence processing there is a preference to treat the first noun phrase found as the subject and agent, unless marked the other way. This preference would lead to a conflict in thematic role assignment when the syntactic structure conforms to a non-canonical object-before-subject pattern. Left perisylvian and fronto-parietal brain networks have been found to be engaged by increased computational demands during sentence comprehension, while event-reated brain potentials have been used to study the on-line manifestation of these demands. However, evidence regarding the spatiotemporal organization of brain networks in this domain is scarce. In the current study we used Magnetoencephalography to track spatio-temporally brain activity while Spanish speakers were reading subject- and object-first cleft sentences. Both kinds of sentences remained ambiguous between a subject-first or an object-first interpretation up to the appearance of the second argument. Results show the time-modulation of a frontal network at the disambiguation point of object-first sentences. Moreover, the time windows where these effects took place have been previously related to thematic role integration (300–500 ms) and to sentence reanalysis and resolution of conflicts during processing (beyond 500 ms post-stimulus). These results point to frontal cognitive control as a putative key mechanism which may operate when a revision of the sentence structure and meaning is necessary
Resumo:
Machine learning techniques are used for extracting valuable knowledge from data. Nowa¬days, these techniques are becoming even more important due to the evolution in data ac¬quisition and storage, which is leading to data with different characteristics that must be exploited. Therefore, advances in data collection must be accompanied with advances in machine learning techniques to solve new challenges that might arise, on both academic and real applications. There are several machine learning techniques depending on both data characteristics and purpose. Unsupervised classification or clustering is one of the most known techniques when data lack of supervision (unlabeled data) and the aim is to discover data groups (clusters) according to their similarity. On the other hand, supervised classification needs data with supervision (labeled data) and its aim is to make predictions about labels of new data. The presence of data labels is a very important characteristic that guides not only the learning task but also other related tasks such as validation. When only some of the available data are labeled whereas the others remain unlabeled (partially labeled data), neither clustering nor supervised classification can be used. This scenario, which is becoming common nowadays because of labeling process ignorance or cost, is tackled with semi-supervised learning techniques. This thesis focuses on the branch of semi-supervised learning closest to clustering, i.e., to discover clusters using available labels as support to guide and improve the clustering process. Another important data characteristic, different from the presence of data labels, is the relevance or not of data features. Data are characterized by features, but it is possible that not all of them are relevant, or equally relevant, for the learning process. A recent clustering tendency, related to data relevance and called subspace clustering, claims that different clusters might be described by different feature subsets. This differs from traditional solutions to data relevance problem, where a single feature subset (usually the complete set of original features) is found and used to perform the clustering process. The proximity of this work to clustering leads to the first goal of this thesis. As commented above, clustering validation is a difficult task due to the absence of data labels. Although there are many indices that can be used to assess the quality of clustering solutions, these validations depend on clustering algorithms and data characteristics. Hence, in the first goal three known clustering algorithms are used to cluster data with outliers and noise, to critically study how some of the most known validation indices behave. The main goal of this work is however to combine semi-supervised clustering with subspace clustering to obtain clustering solutions that can be correctly validated by using either known indices or expert opinions. Two different algorithms are proposed from different points of view to discover clusters characterized by different subspaces. For the first algorithm, available data labels are used for searching for subspaces firstly, before searching for clusters. This algorithm assigns each instance to only one cluster (hard clustering) and is based on mapping known labels to subspaces using supervised classification techniques. Subspaces are then used to find clusters using traditional clustering techniques. The second algorithm uses available data labels to search for subspaces and clusters at the same time in an iterative process. This algorithm assigns each instance to each cluster based on a membership probability (soft clustering) and is based on integrating known labels and the search for subspaces into a model-based clustering approach. The different proposals are tested using different real and synthetic databases, and comparisons to other methods are also included when appropriate. Finally, as an example of real and current application, different machine learning tech¬niques, including one of the proposals of this work (the most sophisticated one) are applied to a task of one of the most challenging biological problems nowadays, the human brain model¬ing. Specifically, expert neuroscientists do not agree with a neuron classification for the brain cortex, which makes impossible not only any modeling attempt but also the day-to-day work without a common way to name neurons. Therefore, machine learning techniques may help to get an accepted solution to this problem, which can be an important milestone for future research in neuroscience. Resumen Las técnicas de aprendizaje automático se usan para extraer información valiosa de datos. Hoy en día, la importancia de estas técnicas está siendo incluso mayor, debido a que la evolución en la adquisición y almacenamiento de datos está llevando a datos con diferentes características que deben ser explotadas. Por lo tanto, los avances en la recolección de datos deben ir ligados a avances en las técnicas de aprendizaje automático para resolver nuevos retos que pueden aparecer, tanto en aplicaciones académicas como reales. Existen varias técnicas de aprendizaje automático dependiendo de las características de los datos y del propósito. La clasificación no supervisada o clustering es una de las técnicas más conocidas cuando los datos carecen de supervisión (datos sin etiqueta), siendo el objetivo descubrir nuevos grupos (agrupaciones) dependiendo de la similitud de los datos. Por otra parte, la clasificación supervisada necesita datos con supervisión (datos etiquetados) y su objetivo es realizar predicciones sobre las etiquetas de nuevos datos. La presencia de las etiquetas es una característica muy importante que guía no solo el aprendizaje sino también otras tareas relacionadas como la validación. Cuando solo algunos de los datos disponibles están etiquetados, mientras que el resto permanece sin etiqueta (datos parcialmente etiquetados), ni el clustering ni la clasificación supervisada se pueden utilizar. Este escenario, que está llegando a ser común hoy en día debido a la ignorancia o el coste del proceso de etiquetado, es abordado utilizando técnicas de aprendizaje semi-supervisadas. Esta tesis trata la rama del aprendizaje semi-supervisado más cercana al clustering, es decir, descubrir agrupaciones utilizando las etiquetas disponibles como apoyo para guiar y mejorar el proceso de clustering. Otra característica importante de los datos, distinta de la presencia de etiquetas, es la relevancia o no de los atributos de los datos. Los datos se caracterizan por atributos, pero es posible que no todos ellos sean relevantes, o igualmente relevantes, para el proceso de aprendizaje. Una tendencia reciente en clustering, relacionada con la relevancia de los datos y llamada clustering en subespacios, afirma que agrupaciones diferentes pueden estar descritas por subconjuntos de atributos diferentes. Esto difiere de las soluciones tradicionales para el problema de la relevancia de los datos, en las que se busca un único subconjunto de atributos (normalmente el conjunto original de atributos) y se utiliza para realizar el proceso de clustering. La cercanía de este trabajo con el clustering lleva al primer objetivo de la tesis. Como se ha comentado previamente, la validación en clustering es una tarea difícil debido a la ausencia de etiquetas. Aunque existen muchos índices que pueden usarse para evaluar la calidad de las soluciones de clustering, estas validaciones dependen de los algoritmos de clustering utilizados y de las características de los datos. Por lo tanto, en el primer objetivo tres conocidos algoritmos se usan para agrupar datos con valores atípicos y ruido para estudiar de forma crítica cómo se comportan algunos de los índices de validación más conocidos. El objetivo principal de este trabajo sin embargo es combinar clustering semi-supervisado con clustering en subespacios para obtener soluciones de clustering que puedan ser validadas de forma correcta utilizando índices conocidos u opiniones expertas. Se proponen dos algoritmos desde dos puntos de vista diferentes para descubrir agrupaciones caracterizadas por diferentes subespacios. Para el primer algoritmo, las etiquetas disponibles se usan para bus¬car en primer lugar los subespacios antes de buscar las agrupaciones. Este algoritmo asigna cada instancia a un único cluster (hard clustering) y se basa en mapear las etiquetas cono-cidas a subespacios utilizando técnicas de clasificación supervisada. El segundo algoritmo utiliza las etiquetas disponibles para buscar de forma simultánea los subespacios y las agru¬paciones en un proceso iterativo. Este algoritmo asigna cada instancia a cada cluster con una probabilidad de pertenencia (soft clustering) y se basa en integrar las etiquetas conocidas y la búsqueda en subespacios dentro de clustering basado en modelos. Las propuestas son probadas utilizando diferentes bases de datos reales y sintéticas, incluyendo comparaciones con otros métodos cuando resulten apropiadas. Finalmente, a modo de ejemplo de una aplicación real y actual, se aplican diferentes técnicas de aprendizaje automático, incluyendo una de las propuestas de este trabajo (la más sofisticada) a una tarea de uno de los problemas biológicos más desafiantes hoy en día, el modelado del cerebro humano. Específicamente, expertos neurocientíficos no se ponen de acuerdo en una clasificación de neuronas para la corteza cerebral, lo que imposibilita no sólo cualquier intento de modelado sino también el trabajo del día a día al no tener una forma estándar de llamar a las neuronas. Por lo tanto, las técnicas de aprendizaje automático pueden ayudar a conseguir una solución aceptada para este problema, lo cual puede ser un importante hito para investigaciones futuras en neurociencia.
Resumo:
By combining complex network theory and data mining techniques, we provide objective criteria for optimization of the functional network representation of generic multivariate time series. In particular, we propose a method for the principled selection of the threshold value for functional network reconstruction from raw data, and for proper identification of the network's indicators that unveil the most discriminative information on the system for classification purposes. We illustrate our method by analysing networks of functional brain activity of healthy subjects, and patients suffering from Mild Cognitive Impairment, an intermediate stage between the expected cognitive decline of normal aging and the more pronounced decline of dementia. We discuss extensions of the scope of the proposed methodology to network engineering purposes, and to other data mining tasks.
Resumo:
One of the current issues of debate in the study of mild cognitive impairment (MCI) is deviations of oscillatory brain responses from normal brain states and its dynamics. This work aims to characterize the differences of power in brain oscillations during the execution of a recognition memory task in MCI subjects in comparison with elderly controls. Magnetoencephalographic (MEG) signals were recorded during a continuous recognition memory task performance. Oscillatory brain activity during the recognition phase of the task was analyzed by wavelet transform in the source space by means of minimum norm algorithm. Both groups obtained a 77% hit ratio. In comparison with healthy controls, MCI subjects showed increased theta (p < 0.001), lower beta reduction (p < 0.001) and decreased alpha and gamma power (p < 0.002 and p < 0.001 respectively) in frontal, temporal and parietal areas during early and late latencies. Our results point towards a dual pattern of activity (increase and decrease) which is indicative of MCI and specific to certain time windows, frequency bands and brain regions. These results could represent two neurophysiological sides of MCI. Characterizing these opposing processes may contribute to the understanding of the disorder.
Resumo:
It is well established that aesthetic appreciation is related with activity in several different brain regions. The identification of the neural correlates of beauty or liking ratings has been the focus of most prior studies. Not much attention has been directed towards the fact that humans are surrounded by objects that lead them to experience aesthetic indifference or leave them with a negative aesthetic impression. Here we explore the neural substrate of such experiences. Given the neuroimaging techniques that have been used, little is known about the temporal features of such brain activity. By means of magnetoencephalography we registered the moment at which brain activity differed while participants viewed images they considered to be beautiful or not. Results show that the first differential activity appears between 300 and 400 ms after stimulus onset. During this period activity in right lateral orbitofrontal cortex (lOFC) was greater while participants rated visual stimuli as not beautiful than when they rated them as beautiful. We argue that this activity is associated with an initial negative aesthetic impression formation, driven by the relative hedonic value of stimuli regarded as not beautiful. Additionally, our results contribute to the understanding of the nature of the functional roles of the lOFC.
Resumo:
Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document. Analysis of big amount of data is a field with many years of research. It is centred in getting significant values, to make it easier to understand and interpret data. Being the analysis of interdependence between time series an important field of research, mainly as a result of advances in the characterization of dynamical systems from the signals they produce. In the medicine sphere, it is easy to find many researches that try to understand the brain behaviour, its operation mode and its internal connections. The human brain comprises approximately 1011 neurons, each of which makes about 103 synaptic connections. This huge number of connections between individual processing elements provides the fundamental substrate for neuronal ensembles to become transiently synchronized or functionally connected. A similar complex network configuration and dynamics can also be found at the macroscopic scales of systems neuroscience and brain imaging. The emergence of dynamically coupled cell assemblies represents the neurophysiological substrate for cognitive function such as perception, learning, thinking. Understanding the complex network organization of the brain on the basis of neuroimaging data represents one of the most impervious challenges for systems neuroscience. Brain connectivity is an elusive concept that refers to diferent interrelated aspects of brain organization: structural, functional connectivity (FC) and efective connectivity (EC). Structural connectivity refers to a network of physical connections linking sets of neurons, it is the anatomical structur of brain networks. However, FC refers to the statistical dependence between the signals stemming from two distinct units within a nervous system, while EC refers to the causal interactions between them. This research opens the door to try to resolve diseases related with the brain, like Parkinson’s disease, senile dementia, mild cognitive impairment, etc. One of the most important project associated with Alzheimer’s research and other diseases are enclosed in the European project called Blue Brain. The center for Biomedical Technology (CTB) of Universidad Politecnica de Madrid (UPM) forms part of the project. The CTB researches have developed a magnetoencephalography (MEG) data processing tool that allow to visualise and analyse data in an intuitive way. This tool receives the name of HERMES, and it is presented in this document.
Resumo:
There is general agreement within the scientific community in considering Biology as the science with more potential to develop in the XXI century. This is due to several reasons, but probably the most important one is the state of development of the rest of experimental and technological sciences. In this context, there are a very rich variety of mathematical tools, physical techniques and computer resources that permit to do biological experiments that were unbelievable only a few years ago. Biology is nowadays taking advantage of all these newly developed technologies, which are been applied to life sciences opening new research fields and helping to give new insights in many biological problems. Consequently, biologists have improved a lot their knowledge in many key areas as human function and human diseases. However there is one human organ that is still barely understood compared with the rest: The human brain. The understanding of the human brain is one of the main challenges of the XXI century. In this regard, it is considered a strategic research field for the European Union and the USA. Thus, there is a big interest in applying new experimental techniques for the study of brain function. Magnetoencephalography (MEG) is one of these novel techniques that are currently applied for mapping the brain activity1. This technique has important advantages compared to the metabolic-based brain imagining techniques like Functional Magneto Resonance Imaging2 (fMRI). The main advantage is that MEG has a higher time resolution than fMRI. Another benefit of MEG is that it is a patient friendly clinical technique. The measure is performed with a wireless set up and the patient is not exposed to any radiation. Although MEG is widely applied in clinical studies, there are still open issues regarding data analysis. The present work deals with the solution of the inverse problem in MEG, which is the most controversial and uncertain part of the analysis process3. This question is addressed using several variations of a new solving algorithm based in a heuristic method. The performance of those methods is analyzed by applying them to several test cases with known solutions and comparing those solutions with the ones provided by our methods.
Resumo:
One of the most challenging problems that must be solved by any theoretical model purporting to explain the competence of the human brain for relational tasks is the one related with the analysis and representation of the internal structure in an extended spatial layout of múltiple objects. In this way, some of the problems are related with specific aims as how can we extract and represent spatial relationships among objects, how can we represent the movement of a selected object and so on. The main objective of this paper is the study of some plausible brain structures that can provide answers in these problems. Moreover, in order to achieve a more concrete knowledge, our study will be focused on the response of the retinal layers for optical information processing and how this information can be processed in the first cortex layers. The model to be reported is just a first trial and some major additions are needed to complete the whole vision process.
Resumo:
Background Magnetoencephalography (MEG) provides a direct measure of brain activity with high combined spatiotemporal resolution. Preprocessing is necessary to reduce contributions from environmental interference and biological noise. New method The effect on the signal-to-noise ratio of different preprocessing techniques is evaluated. The signal-to-noise ratio (SNR) was defined as the ratio between the mean signal amplitude (evoked field) and the standard error of the mean over trials. Results Recordings from 26 subjects obtained during and event-related visual paradigm with an Elekta MEG scanner were employed. Two methods were considered as first-step noise reduction: Signal Space Separation and temporal Signal Space Separation, which decompose the signal into components with origin inside and outside the head. Both algorithm increased the SNR by approximately 100%. Epoch-based methods, aimed at identifying and rejecting epochs containing eye blinks, muscular artifacts and sensor jumps provided an SNR improvement of 5–10%. Decomposition methods evaluated were independent component analysis (ICA) and second-order blind identification (SOBI). The increase in SNR was of about 36% with ICA and 33% with SOBI. Comparison with existing methods No previous systematic evaluation of the effect of the typical preprocessing steps in the SNR of the MEG signal has been performed. Conclusions The application of either SSS or tSSS is mandatory in Elekta systems. No significant differences were found between the two. While epoch-based methods have been routinely applied the less often considered decomposition methods were clearly superior and therefore their use seems advisable.
Resumo:
Cognitive neuroscience boils down to describing the ways in which cognitive function results from brain activity. In turn, brain activity shows complex fluctuations, with structure at many spatio-temporal scales. Exactly how cognitive function inherits the physical dimensions of neural activity, though, is highly non-trivial, and so are generally the corresponding dimensions of cognitive phenomena. As for any physical phenomenon, when studying cognitive function, the first conceptual step should be that of establishing its dimensions. Here, we provide a systematic presentation of the temporal aspects of task-related brain activity, from the smallest scale of the brain imaging technique's resolution, to the observation time of a given experiment, through the characteristic time scales of the process under study. We first review some standard assumptions on the temporal scales of cognitive function. In spite of their general use, these assumptions hold true to a high degree of approximation for many cognitive (viz. fast perceptual) processes, but have their limitations for other ones (e.g., thinking or reasoning). We define in a rigorous way the temporal quantifiers of cognition at all scales, and illustrate how they qualitatively vary as a function of the properties of the cognitive process under study. We propose that each phenomenon should be approached with its own set of theoretical, methodological and analytical tools. In particular, we show that when treating cognitive processes such as thinking or reasoning, complex properties of ongoing brain activity, which can be drastically simplified when considering fast (e.g., perceptual) processes, start playing a major role, and not only characterize the temporal properties of task-related brain activity, but also determine the conditions for proper observation of the phenomena. Finally, some implications on the design of experiments, data analyses, and the choice of recording parameters are discussed.
Resumo:
El dolor es un síntoma frecuente en la práctica médica. En España, un estudio realizado en el año 2000 demostró que cada médico atiende un promedio de 181 pacientes con dolor por mes, la mayoría de ellos con dolor crónico moderado1. Del 7%-8% de la población europea está afectada y hasta el 5% puede ser grave2-3, se estima, que afecta a más de dos millones de españoles4. En la consulta de Atención Primaria, los pacientes con dolor neuropático tienen tasas de depresión mucho mayores 5-6-7. El dolor neuropático8 es el dolor causado por daño o enfermedad que afecta al sistema somato-sensorial, es un problema de salud pública con un alto coste laboral, debido a que existe cierto desconocimiento de sus singularidades, tanto de su diagnóstico como de su tratamiento, que al fallar, el dolor se perpetúa y se hace más rebelde a la hora de tratarlo, en la mayoría de las ocasiones pasa a ser crónico. Los mecanismos fisiopatológicos son evolutivos, se trata de un proceso progresivo e integrado que avanza si no recibe tratamiento, ocasionando graves repercusiones en la calidad de vida de los pacientes afectados9. De acuerdo a Prusiner (premio nobel de medicina 1997), en todas las enfermedades neurodegenerativas hay algún tipo de proceso anormal de la función neuronal. Las enfermedades neurodegenerativas son la consecuencia de anormalidades en el proceso de ciertas proteínas que intervienen en el ciclo celular, por lo tanto da lugar al cúmulo de las mismas en las neuronas o en sus proximidades, disminuyendo o anulando sus funciones, como la enfermedad de Alzheimer y el mismo SXF. La proteína FMRP (Fragile Mental Retardation Protein), esencial para el desarrollo cognitivo normal, ha sido relacionada con la vía piramidal del dolor10-11-12. El Síndrome de X Frágil13-14 (SXF), se debe a la mutación del Gen (FMR-1). Como consecuencia de la mutación, el gen se inactiva y no puede realizar la función de sintetizar la proteína FMRP. Por su incidencia se le considera la primera causa de Deficiencia Mental Hereditaria sólo superada por el Síndrome de Down. La electroencefalografía (EEG) es el registro de la actividad bioeléctrica cerebral que ha traído el desarrollo diario de los estudios clínicos y experimentales para el descubrimiento, diagnóstico y tratamiento de un gran número de anormalidades neurológicas y fisiológicas del cerebro y el resto del sistema nervioso central (SNC) incluyendo el dolor. El objetivo de la presente investigación es por medio de un estudio multimodal, desarrollar nuevas formas de presentación diagnóstica mediante técnicas avanzadas de procesado de señal y de imagen, determinando así los vínculos entre las evaluaciones cognitivas y su correlación anatómica con la modulación al dolor presente en patologías relacionadas con proteína FMRP. Utilizando técnicas biomédicas (funcionalestructural) para su caracterización. Para llevar a cabo esta tarea hemos utilizado el modelo animal de ratón. Nuestros resultados en este estudio multimodal demuestran que hay alteraciones en las vías de dolor en el modelo animal FMR1-KO, en concreto en la modulación encefálica (dolor neuropático), los datos se basan en los resultados del estudio estructural (imagen histología), funcional (EEG) y en pruebas de comportamiento (Laberinto de Barnes). En la Histología se muestra una clara asimetría estructural en el modelo FMR1 KO con respecto al control WT, donde el hemisferio Izquierdo tiene mayor densidad de masa neuronal en KO hembras 56.7%-60.8%, machos 58.3%-61%, en WT hembras 62.7%-62.4%, machos 55%-56.2%, hemisferio derecho-izquierdo respectivamente, esto refleja una correlación entre hemisferios muy baja en los sujetos KO (~50%) con respecto a los control WT (~90%). Se encontró correlación significativa entre las pruebas de memoria a largo plazo con respecto a la asimetría hemisférica (r = -0.48, corregido <0,05). En el estudio de comportamiento también hay diferencias, los sujetos WT tuvieron 22% un de rendimiento en la memoria a largo plazo, mientras que en los machos hay deterioro de memoria de un 28% que se corresponden con la patología en humanos. En los resultados de EEG estudiados en el hemisferio izquierdo, en el área de la corteza insular, encuentran que la latencia de la respuesta al potencial evocado es menor (22vs32 15vs96seg), la intensidad de la señal es mayor para los sujetos experimentales FMR1 KO frente a los sujetos control, esto es muy significativo dados los resultados en la histología (140vs129 145vs142 mv). Este estudio multimodal corrobora que las manifestaciones clínicas del SXF son variables dependientes de la edad y el sexo. Hemos podido corroborar en el modelo animal que en la etapa de adulto, los varones con SXF comienzan a desarrollar problemas en el desempeño de tareas que requieren la puesta en marcha de la función ejecutiva central de la memoria de trabajo (almacenamiento temporal). En el análisis del comportamiento es difícil llegar a una conclusión objetiva, se necesitan más estudios en diferentes etapas de la vida corroborados con resultados histológicos. Los avances logrados en los últimos años en su estudio han sido muy positivos, de tal modo que se están abriendo nuevas vías de investigación en un conjunto de procesos que representan un gran desafío a problemas médicos, asistenciales, sociales y económicos a los que se enfrentan los principales países desarrollados, con un aumento masivo de las expectativas de vida y de calidad. Las herramientas utilizadas en el campo de las neurociencias nos ofrecen grandes posibilidades para el desarrollo de estrategias que permitan ser utilizadas en el área de la educación, investigación y desarrollo. La genética determina la estructura del cerebro y nuestra investigación comprueba que la ausencia de FMRP también podría estar implicada en la modulación del dolor como parte de su expresión patológica siendo el modelo animal un punto importante en la investigación científica fundamental para entender el desarrollo de anormalidades en el cerebro. ABSTRACT Pain is a common symptom in medical practice. In Spain, a study conducted in 2000 each medical professional treats an average of 181 patients with pain per month, most of them with chronic moderate pain. 7% -8% of the European population is affected and up to 5% can be serious, it is estimated to affect more than two million people in Spain. In Primary Care, patients with neuropathic pain have much higher rates of depression. Neuropathic pain is caused by damage or disease affecting the somatosensory system, is a public health problem with high labor costs, there are relatively unfamiliar with the peculiarities in diagnosis and treatment, failing that, the pain is perpetuated and becomes rebellious to treat, in most cases becomes chronic. The pathophysiological mechanisms are evolutionary, its a progressive, if untreated, causing severe impact on the quality of life of affected patients. According to Prusiner (Nobel Prize for Medicine 1997), all neurodegenerative diseases there is some abnormal process of neuronal function. Neurodegenerative diseases are the result of abnormalities in the process of certain proteins involved in the cell cycle, reducing or canceling its features such as Alzheimer's disease and FXS. FMRP (Fragile Mental Retardation Protein), is essential for normal cognitive development, and has been linked to the pyramidal tract pain. Fragile X Syndrome (FXS), is due to mutation of the gene (FMR-1). As a consequence of the mutation, the gene is inactivated and can not perform the function of FMRP synthesize. For its incidence is considered the leading cause of Mental Deficiency Hereditary second only to Down Syndrome. Electroencephalography (EEG) is the recording of bioelectrical brain activity, is a advancement of clinical and experimental studies for the detection, diagnosis and treatment of many neurological and physiological abnormalities of the brain and the central nervous system, including pain. The objective of this research is a multimodal study, is the development of new forms of presentation using advanced diagnostic techniques of signal processing and image, to determine the links between cognitive evaluations and anatomic correlation with pain modulation to this protein FMRP-related pathologies. To accomplish this task have used the mouse model. Our results in this study show alterations in multimodal pain pathways in FMR1-KO in brain modulation (neuropathic pain), the data are based on the results of the structural study (histology image), functional (EEG) testing and behavior (Barnes maze). Histology In structural asymmetry shown in FMR1 KO model versus WT control, the left hemisphere is greater density of neuronal mass (KO females 56.7% -60.8%, 58.3% -61% males, females 62.7% -62.4 WT %, males 55% -56.2%), respectively right-left hemisphere, this reflects a very low correlation between hemispheres in KO (~ 50%) subjects compared to WT (~ 90%) control. Significant correlation was found between tests of long-term memory with respect to hemispheric asymmetry (r = -0.48, corrected <0.05). In the memory test there are differences too, the WT subjects had 22% yield in long-term memory, in males there memory impairment 28% corresponding to the condition in humans. The results of EEG studied in the left hemisphere, in insular cortex area, we found that the latency of the response evoked potential is lower (22vs32 15vs96seg), the signal strength is higher for the experimental subjects versus FMR1 KO control subjects, this is very significant given the results on histology (140vs129 145vs142 mv). This multimodal study confirms that the clinical manifestations of FXS are dependent variables of age and sex. We have been able to corroborate in the animal model in the adult stage, males with FXS begin developing problems in the performance of tasks that require the implementation of the central executive function of working memory (temporary storage). In behavior analysis is difficult to reach an objective conclusion, more studies are needed in different life stages corroborated with histologic findings. Advances in recent years were very positive, being opened new lines of research that represent a great challenge to physicians, health care, social and economic problems facing the major developed countries, with a massive increase in life expectancy and quality. The tools used in the field of neuroscience offer us great opportunities for the development of strategies to be used in the area of education, research and development. Genetics determines the structure of the brain and our research found that the absence of FMRP might also be involved in the modulation of pain as part of their pathological expression being an important animal model in basic scientific research to understand the development of abnormalities in brain.
Resumo:
La unión de distintos sistemas software constituye un elemento principal de las nuevas Tecnologías de la Información y la Comunicación. La integración de entornos virtuales tridimensionales con agentes software inteligentes es el objetivo que persigue este trabajo de investigación. Para llevar a cabo esta integración se parte de la creación de un agente virtual, un personaje que es controlado por una mente desarrollada siguiendo un enfoque basado en agentes software. Se busca así dotar al sistema de cierto nivel de inteligencia, tomando como referencia el funcionamiento del cerebro humano. Lo que se consigue es que el agente capte los estímulos del entorno, los procese y genere comportamientos, tanto reactivos como deliberativos, que son ejecutados por el personaje. Los resultados obtenidos resaltan el dinamismo del sistema, a la vez que animan a seguir investigando en este campo lleno de aplicaciones directas y reales sobre el mundo. En conclusión, esta investigación busca y consigue un nuevo paso en el progreso de las nuevas tecnologías mediante una integración real de distintos sistemas software. ---ABSTRACT---The union of different software systems is a major element of Information and Communications Technology. The aim of this research is the integration of 3D virtual environments and intelligent software agents. This integration is based on the development of a virtual agent, a character that is controlled by a mind developed following a software agent approach. It is sought to provide the system with some intelligence level, taking the human brain function as a reference point. The consequence is that the agent captures environmental stimuli, processes them and creates reactive and deliberative behaviours that can be executed by the avatar. The findings emphasize the dynamism of the system as well as they encourage to research more in this field that has a lot of direct and real-life applications on the world. In conclusion, this research seeks and takes a new step in the progress of new technologies through a real integration of different software systems.