980 resultados para HPLC-PDA
Resumo:
This study focus in the valorization of the apple pomace with the main goal of obtaining added value products. For that, hot compressed water technology was used for the extraction of phenolic compounds and hydrolysis of polysaccharides presents in the lignocellulosic structure of apple pomace to obtain simple sugars. The sugars have been utilized as alternative carbon source for growth, lipid accumulation and carotenoids production by five different yeast Yarrowia lipolytica, Rhodotorula mucilaginosa, Rhodotorula glutinis, Rhodosporidium babjevae and Rhodosporidium toruloides. Hydrolysis experiments were carried out with constant pressure of 100 bar, flow rate of 2mL/min and temperatures between 50°C and 250°C. The amount of total sugars present in apple pomace hydrolysates showed maximum values for the hydrolysis temperatures of 110°C and 190°C. In fact, these temperatures revealed the best results regarding the monosaccharides quantities. The amount of 5-HMF and furfural in each hydrolysate varied through the different temperatures. Maximum values for 5-HMF were obtained with 170°C, while furfural showed to be maximum at 210°C. Extraction of phenolic compounds were performed in simultaneously with hydrolysis reactions. Total phenolic compounds (TPC) increased along the temperature, however with small variations between 170°C and 250°C. Hydrolysates were then used as alternative carbon source to yeast growth. R. mucilaginosa shows the highest optical density, with the hydrolysate obtained at 130°C. Carotenoids produced by these yeast scored a total of 7.02μg carotenoids/g cell dry weight, while for the control assay, the same yeast scored 9.31μg caratonoides/g cell dry weight. β-carotene was quantified by HPLC, were 33% of the carotenoid production by R. mucilaginosa with hydrolysate as carbon source, corresponded to β-caroteno.
Resumo:
A indústria farmacêutica é uma indústria de grande dimensão e que exige a maior qualidade possível. No grupo AtralCipan, essa exigência não é esquecida e por isso se tem um enorme cuidado ao nível da limpeza dos equipamentos por forma a impedir contaminações cruzadas. Os Laboratórios Atral têm vindo ao longo dos anos a realizar validações de limpeza com o objetivo de mostrar e verificar que realmente as limpezas efetuadas aos equipamentos e respetivas salas são eficazes, não comprometendo nenhuma produção. A presente dissertação visa na validação de limpeza dos equipamentos do setor das formas sólidas orais cefalosporínas. O trabalho desenvolvido iniciou-se com a seleção dos produtos pior-caso do setor através de uma análise de risco. Posteriormente, analisou-se cada equipamento presente no setor (câmara de pesagem, tamisador, misturador bicónico, compactadora, máquina de comprimir e despoeirador, bacias de revestimento e máquina de blisterar) para identificação dos pontos críticos de limpeza dos mesmos. Com base nas áreas dos equipamentos e posologia dos produtos, calculou-se o limite analítico para cada produto pior-caso e validou-se o método analítico por HPLC para cada um. Os resultados destas duas validações foram favoráveis, revelando que a pesquisa de resíduos de substância ativa através de HPLC é um método adequado e que pode ser utilizado. O passo seguinte deste processo recai nas amostragens a efetuar a cada equipamento consoante os pontos críticos identificados. As amostragens efetuadas incidiram sobre a pesquisa de carbono orgânico total, determinação de atividade microbiológica e determinação de resíduos de substância ativa. No geral obtiveram-se bons resultados, verificando-se que todas as amostragens obtiveram resultados inferiores aos limites estipulados, existindo um desvio para o misturador bicónico ao nível da pesquisa de carbono orgânico total e dois desvios na determinação de atividade microbiana na compactadora e máquina de blisterar. O trabalho desenvolvido forneceu informações importantes à empresa, demostrando que o modo de limpeza dos seus equipamentos é apropriado, prevenindo futuras contaminações cruzadas entre os diversos medicamentos fabricados.
Resumo:
The main objective of this thesis was the development of polymeric structures from the dissolution of FucoPol, a bacterial exopolysaccharide (EPS), in a biocompatible ionic liquid, choline acetate. The FucoPol was produced by the bacteria Enterobacter A47 using glycerol as carbon source at controlled temperature and pH (30ºC and 7, respectively). At the end of 3 days it was produced 7 g/L of FucoPol. The net yield of Fucopol in glycerol (YP/S) was 0.22 g/g and the maximum productivity 2.37 g/L.d This polymer was characterized about its composition in sugars and acyl groups (by High-Performance Liquid Chromatography - HPLC), containing fucose (35 % mol), galactose (21 % mol), glucose (29 % mol), rhamnose (3% mol) and glucuronic acid (12% mol) as well as acetate (14.28 % mol), pyruvate (2.15 % mol) and succinate (1.80 % mol). Its content of water and ash was 15% p/p and 2% p/p, respectively, and the chemical bonds (determined by Infrared Spectroscopy - FT-IR) are consistent to the literature reports. However, due to limitations in Differential Scanning Calorimetry (DSC) equipment it was not possible to determine the glass transition temperature. In turn, the ionic liquid showed the typical behavior of a Newtonian fluid, glass transition temperature (determined by DSC) -98.03ºC and density 1.1031 g/cm3. The study of chemical bonds by FT-IR showed that amount of water (8.80%) influenced the visualization of the bands predicted to in view of their chemical structure. After the dissolution of the FucoPol in the ionic liquid at different temperatures (50, 60, 80 and 100 ° C) it was promoted the removal of this by the phase inversion method using deionized water as a solvent, followed by drying in an oven at 70 ° C. The mixtures before and after the phase inversion method were characterized through the studies mentioned above. In order to explore possible application field’s biocompatibility assays and collage on balsa wood tests were performed. It was found that the process of washing with water by the phase inversion method was not totally effective in removing the biocompatible ionic liquid, since all FucoPol – IL mixtures still contained ionic liquid in their composition as can be seen by the DSC results and FT-IR. In addition, washing the mixtures with water significantly altered the composition of FucoPol. However, these mixtures, that developed a viscous behavior typical of a non-Newtonian fluid (shear-thinning), have the potential to be applied in the biomedical field as well as biological glues.
Resumo:
A utilização de equipamentos multiproduto é uma prática bastante comum em indústria farmacêutica. No entanto, a esta prática podem associar-se riscos de transferência de contaminantes sendo de extrema importância garantir a eficácia dos procedimentos de limpeza estabelecidos. Esta dissertação tem como objetivo a validação de limpeza dos equipamentos do setor das Formas Líquidas e Pastosas (FLP), dos Laboratórios Atral, SA por forma a evidenciar a eficácia e eficiência destes procedimentos na remoção de substâncias ativas (SA), excipientes e agentes de limpeza (tipos de contaminantes). Tendo em conta a diversidade de produtos e equipamentos do setor, recorreu-se a uma análise de risco para identificação de equipamentos e produtos pior-caso. A partir desta análise será também possível identificar os resíduos de substância ativa a procurar após higienização de um determinado equipamento. Para tal, foi necessário estabelecer e validar métodos de análise em HPLC (High Performance Liquid Chromatography) capazes de identificar e quantificar os resíduos das SAs em questão. A baixa frequência de produção de alguns dos produtos pior-caso impossibilitou o terminar dos estudos de validação de limpeza para o agitador de hélice e equipamentos de produção de cremes. O desenvolvimento destes procedimentos permitirá identificar potenciais riscos anteriormente desconhecidos, bem como a recolha e elaboração de documentos comprovativos da capacidade e adequabilidade dos procedimentos de limpeza aplicados.
Valorization of olive pomace through combination of biocatalysis with supercritical fluid technology
Resumo:
A supercritical carbon dioxide (scCO2) based oil extraction method was implemented on olive pomace (alperujo), and an oil yield of 25,5 +/- 0,8% (goil/gdry residue) was obtained. By Soxhlet extraction with hexane, an oil extraction yield of 28,9 +/- 0,8 % was obtained, which corresponds to an efficiency of 88,4 +/- 4,8 % for the supercritical method. The scCO2 extraction process was optimized for operating conditions of 50 MPa and 348,15 K, for which an oil loading of 32,60 g oil/kg CO2 was calculated. As a proof of concept, olive pomace was used as feedstock for biodiesel production, in a process combining the use of lipase as a catalyst with the use of scCO2 as a solvent, and integrating the steps of oil extraction, oil to biodiesel transesterification and subsequent separation of the latter. In the conducted experiments, FAME (fatty acid methyl ester) purities of 90% were obtained, with the following operating parameters: an oil:methanol molar ratio of 1:24; a residence time of 7,33 and 11,6 mins; a pressure of 40 MPa; a temperature of 313,15 K; and Lipozyme (Mucor miehei; Sigma-Aldritch) as an enzyme. However, oscillations of FAME purity were registered throughout the experiments, which could possibly be due to methanol accumulation in the enzymatic reactor. Finally, the phenolic content of olive pomace, and the effect of the drying process – oven or freeze-drying – and the extraction methods – hydro-alcoholic method and supercritical method – on the phenolic content were analysed. It was verified that the oven-drying process on the olive pomace preserved 90,1 +/- 3,6 % of the total phenolic content. About 62,3 +/- 5,53% of the oven-dried pomace phenolic content was extracted using scCO2 at 60 MPa and 323,15 K. Seven individual phenols – hydroxytyrosol, tyrosol, oleuropein, quercetin, caffeic acid, ferulic acid and p-coumaric acid – were identified and quantified by HPLC.
Resumo:
In this work two different procedures to utilize the sol-gel technology were applied to immobilize/encapsulate enzymes and living cells. CO2 has reached levels in the atmosphere that make it a pollutant. New methods to utilize this gas to obtain products of added value can be very important, both from an environmentally point of view and from an economic standpoint. The first goal of this work was to study the first reaction of a sequential, three-step, enzymatic process that carries out the conversion of CO2 to methanol. Of the three oxidoreductases involved, our focus was on formate dehydrogenase (FateDH) that converts CO2 to formate. This reaction requires the presence of the cofactor β-nicotinamide adenine dinucleotide in reduced form (NADH). The cofactor is expensive and unstable. Our experiments were directed towards generating NADH from its oxidized form (NAD+), using glutamate dehydrogenase (GDH). The formation of NADH from NAD+ in aqueous medium was studied with both free and sol-gel entrapped GDH. This reaction was then followed by the conversion of CO2 to formate, catalysed by free or sol-gel entrapped FateDH. The quantification of NADH/NAD+ was made using UV/Vis spectroscopy. Our results showed that it was possible to couple the GDH-catalyzed generation of the cofactor NADH with the FateDH-catalyzed conversion of CO2, as confirmed by the detection of formate in the medium, using High Performance Liquid Chromatography (HPLC). The immobilization of living cells can be advantageous from the standpoint of ease of recovery, reutilization and physical separation from the medium. Also dead cells may not always exhibit enzymatic activities found with living cells. In this work cell encapsulation was performed using Escherichia coli bacteria. To reduce toxicity for living organisms, the sol-gel method was different than for enzymes, and involved the use of aqueous-based precursors. Initial encapsulation experiments and viability tests were carried out with E. coli K12. Our results showed that sol-gel entrapment of the cells was achieved, and that cell viability could be increased with additives, namely betaine that led to greater viability improvement and was selected for further studies. For an approach to “in-cell” Nuclear Magnetic Resonance (NMR) experiments, the expression of the protein ctCBM11 was performed in E. coli BL21. It was possible to obtain an NMR signal from the entrapped cells, a considerable proportion of which remained alive after the NMR experiments. However, it was not possible to obtain a distinctive NMR signal from the target protein to distinguish it from the other proteins in the cell.
Resumo:
Tem sido atribuída ao vinho a designação de alimento antioxidante, devido ao seu alto teor em compostos polifenólicos, pelo que o seu consumo moderado pode apresentar efeitos benéficos para a saúde do consumidor. Neste trabalho foram estudados 228 vinhos portugueses monocastas (190 tintos, 30 brancos e 8 rosés), produzidos em 8 regiões do país, (Alentejo, Algarve, Península de Setúbal, Lisboa, Tejo, Verdes, Dão e Trás-os-Montes e Alto Douro) a partir de 12 castas tintas (Alfrocheiro, Alicante Bouschet, Aragonez-Tinta Roriz, Cabernet Sauvignon, Castelão, Merlot, Petit Verdot, Syrah, Tinta Miúda, Touriga Nacional, Trincadeira e Vinhão) e 6 castas brancas (Antão Vaz, Arinto, Chardonnay, Fernão Pires, Malvasia Fina e Verdelho). Estes vinhos foram avaliados quanto à sua composição fenólica por HPLC-DAD, propriedades antioxidantes (reacção de Folin-Ciocalteu, poder de redução férrica, FRAP e capacidade de sequestração do radical DPPH) e foram caracterizados por UV-VIS. Observaram-se correlações fortes entre as actividades antioxidantes dos vinhos e as suas características cromáticas, nomeadamente as suas absorvâncias a 420, 520 e 620 nm, mas também com as absorvâncias a 280 nm, 320 nm ou 360 nm que correspondem a compostos fenólicos não corados. As castas Alicante Bouschet e Petit Verdot destacaram-se quanto às suas propriedades antioxidantes, enquanto as regiões da Península de Setúbal e do Dão revelaram ter características que favorecem a actividade antioxidante dos vinhos nelas produzidos, por comparação com vinhos das mesmas castas produzidos noutras regiões. A análise de HPLC permitiu detectar 52 compostos fenólicos (17 ácidos hidroxibenzóicos ou derivados, 8 flavanóis ou procianidinas, 12 ácidos hidroxicinâmicos e 7 flavonóis) presentes na maior parte dos vinhos tintos analisados. Os resultados obtidos neste trabalho evidenciam a complexidade de factores que determinam as propriedades biológicas e composição fenólica dos vinhos tintos, rosés ou brancos, e que incluem casta, parâmetros edafo-climáticos e características do processo de vinificação.
Resumo:
Magnetospirillum (M.) sp. strain Lusitani, a perchlorate reducing bacteria (PRB), was previously isolated from a wastewater treatment plant and phylogenetic analysis was performed to classify the isolate. The DNA sequence of the genes responsible for perchlorate reduction and chlorite dismutation was determined and a model was designed based on the physiological roles of the proteins involved in the pcr-cld regulon. Chlorite dismutase (Cld) was purified from Magnetospirillum sp. strain Lusitani cells grown in anaerobiosis in the presence of perchlorate. The protein was purified up to electrophoretic grade using HPLC techniques as a 140 kDa homopentamer comprising five ~28 kDa monomers. Steady-state kinetic studies showed that the enzyme follows a Michaelis-Menten model with optimal pH and temperature of 6.0 and 5°C, respectively. The average values for the kinetic constants KM and Vmax were respectively 0.56 mM and 10.2 U, which correspond to a specific activity of 35470 U/mg and a turnover number of 16552 s-1. Cld from M. sp. strain Lusitani is inhibited by the product chloride, but not by dioxygen. Inhibition constants KiC= 460 mM and KiU= 480 mM indicated that sodium chloride is a weak mixed inhibitor of Cld, with a slightly stronger competitive character. The X-ray crystallography structure of M. sp. strain Lusitani Cld was solved at 3.0 Å resolution. In agreement with cofactor content biochemical analysis, the X-ray data showed that each Cld monomer harbors one heme b coordinated by a histidine residue (His188), hydrogen-bonded to a conserved glutamic acid residue (Glu238). The conserved neighboring arginine residue (Arg201) important for substrate positioning, was found in two different conformations in different monomers depending on the presence of the exogenous ligand thiocyanate. UV-Visible and CW-EPR spectroscopies were used to study the effect of redox agents, pH and exogenous ligands on the heme environment.
Resumo:
Analisou-se o teor de vitamina C em três acessos de camu-camu coletados na região leste do Estado de Roraima, sendo um no rio Maú, e outros dois (uma planta isolada e outra população) no rio Urubu, ambos afluentes do rio Tacutu. Para a determinação de ácido ascórbico utilizou-se HPLC. De acordo com os resultados obtidos, verificou-se que os frutos coletados de uma planta individual situada no rio Urubu apresentaram as maiores concentrações de ácido ascórbico 6112±137,5 mg em 100g (polpa). As populações de camu-camu oriundas dos rios Urubu e Maú apresentaram concentrações de ácido ascórbico na ordem de 5737±236,1 mg (polpa+casca) e 3571±12,0 mg (polpa) respectivamente. Esse achado inédito demonstra a necessidade de mais estudos, considerando a variabilidade genética do camu-camu e o potencial nutricional como fonte de vitamina C.
Resumo:
The polymeric material in the latex of Himatanthus sucuuba (Spruce) Woodson was identified by spectroscopic methods as cis-polyisoprene (Mn = 192; Mw = 571; Mw/ Mn = 2.97). ICP-MS analysis of microelements in the aqueous phase showed the most abundant to be Ca (354 μg/g) and Mg (250 μg/g). Carbohydrate analysis of the aqueous phase by HPLC-PAD showed arabinose, glucose, xylose, rhamnose and galactose to be the predominant saccharides.
Resumo:
The present work aims to characterize and quantify the phenolic composition and to evaluate the antioxidant activity of Glycyrrhiza glabra L. (commonly known as licorice) rhizomes and roots. The antioxidant potential of its methanol/water extract could be related with flavones (mainly apigenin derivatives), flavanones (mainly liquirintin derivatives), a methylated isoflavone and a chalcone, identified in the extract. Lipid peroxidation inhibition was the most pronounced antioxidant effect (EC50=0.24±0.01 µg/mL and 22.74±2.42 µg/mL in TBARS and -carotene/linoleate assays, respectively), followed by free radicals scavenging activity (EC50=111.54±6.04 µg/mL) and, finally, reducing power (EC50=128.63±0.21 µg/mL). In this sense, licorice extract could be used as a source of antioxidants for pharmaceutical, cosmetic and/or food industries.
Resumo:
In this study, the metabolomics characterization focusing on the carotenoid composition of ten cassava (Manihot esculenta) genotypes cultivated in southern Brazil by UV-visible scanning spectrophotometry and reverse phase-high performance liquid chromatography was performed. Cassava roots rich in -carotene are an important staple food for populations with risk of vitamin A deficiency. Cassava genotypes with high pro-vitamin A activity have been identified as a strategy to reduce the prevalence of deficiency of this vitamin. The data set was used for the construction of a descriptive model by chemometric analysis. The genotypes of yellow-fleshed roots were clustered by the higher concentrations of cis--carotene and lutein. Inversely, cream-fleshed roots genotypes were grouped precisely due to their lower concentrations of these pigments, as samples rich in lycopene (redfleshed) differed among the studied genotypes. The analytical approach (UV-Vis, HPLC, and chemometrics) used showed to be efficient for understanding the chemodiversity of cassava genotypes, allowing to classify them according to important features for human health and nutrition.
Resumo:
Objective: The aim of this study was to obtain and characterize microcapsules with Ellagic Acid (EA) from pomegranate as core material and Karaya Gum (KG) as wall material. Methods: EA was obtained from dry pomegranate peel powder via methanolysis and quantified by HPLC. Microcapsules were obtained preparing a dispersion containing KG and EA in phosphate buffer pH 8. The dispersion was processed in a spray dryer under specific conditions (inlet temperature at 150 °C, feed flow at 30% and aspirator at 100 %) for obtaining of microcapsules. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used for characterization. Results: Obtained material contains 98.03±2.82 mg EA/g of pomegranate peel. FTIR showed that there were changes in the molecular structure of microcapsules referred to raw materials. SEM confirmed that particles obtained had micron-size (1-5 µm). DSC analysis showed that raw materials had glass transition temperatures of 79.58 and 83.41 °C and for microcapsules the value was67.25 °C. Conclusion: Methanolysis is a viable technique for the obtaining of EA from the peel of pomegranate. KG shows good potential for be used as wall material for EA microencapsulation.
Resumo:
Palm oil (PO) is a very important commodity for many countries and especially Indonesia and Malaysia who are the predominant producers. PO is used in ca. 30% of supermarket foods, cosmetics, cooking and as biodiesel. The growth of oil palms in plantations is controversial as the production methods contribute to climate change and cause environmental damage [1]. The plant is subjected to a devastating disease in these two countries caused by the white rot fungus Ganoderma. There are no satisfactory methods to diagnose the disease in the plant as they are too slow and/or inaccurate. The lipid compound ergosterol is unique to fungi and is used to measure growth especially in solid substrates. We report here on the use of ergosterol to measure the growth of Ganoderma in oil palms using HPLC and TLC methods [2]. The method is rapid and correlates well with other methods and is capable of being used on-site, hence improving the speed of analysis and allowing remedial action. Climate change will affect the health of OP [1] and rapid detection methods will be increasingly required to control the disease. [1] Paterson, RRM, Kumar, L, Taylor, S, Lima N. Future climate effects on suitability for growth of oil palms in Malaysia and Indonesia. Scientific Reports, 5, 2015, 14457. [2] Muniroh, MS, Sariah M, Zainal Abidin, MA, Lima, N, Paterson, RRM. Rapid detection of Ganoderma-infected oil palms by microwave ergosterol extraction with HPLC and TLC. Journal of Microbiological Methods, 100, 2014, 143–147.
Resumo:
A new benzocoumarin bearing an amino group is proposed as a photocleavable protecting group for carboxylic acids. The novel heterocycle, 6-amino-4-chloromethyl-2-oxo-2H-naphtho[1,2-b]pyran was used in the preparation of ester conjugates of butyric acid, and of the corresponding mono- and di-methylated or ethylated derivatives. The photolability of the ester conjugates was studied by irradiation at selected wavelengths in methanol/HEPES buffer (80:20) solutions, and the release of butyric acid was followed with HPLC/UV and 1H NMR monitoring. Release of the carboxylic acid was faster for the monoalkylated derivatives (approximately within 20 min), at the longer wavelengths of irradiation (350 and 419 nm). The photophysics of the heterocyclic conjugates was also evaluated by both steady state and time-resolved methods.