756 resultados para HIGH CAPACITY OPTICAL FIBER TRANSPORT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present results obtained since recording the first FBGs in microstructured polymer optical fibre (mPOF) and discuss the relative merits of Bragg grating based sensing with polymer optical fibre in general and mPOF in particular. © 2006 OSA/OFS 2006.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an experimental demonstration of energy transfer between counterpropagating cladding modes in a fiber Bragg grating (FBG). A strong FBG written in a standard photosensitive optical fiber is illuminated with a single cladding mode, and the power transferred between the forward propagating cladding mode and different backward propagating cladding modes is measured by using two auxiliary long period gratings. Resonances between cladding modes having 30 pm bandwidth and 8 dB rejection have been observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the first experimental demonstration of a humidity insensitive polymer optical fiber Bragg grating (FBG), as well as the first FBG recorded in a TOPAS polymer optical fiber in the important low loss 850nm spectral region. For the demonstration we have fabricated FBGs with resonance wavelength around 850 nm and 1550 nm in single-mode microstructured polymer optical fibers made of TOPAS and the conventional poly (methyl methacrylate) (PMMA). Characterization of the FBGs shows that the TOPAS FBG is more than 50 times less sensitive to humidity than the conventional PMMA FBG in both wavelength regimes. This makes the TOPAS FBG very appealing for sensing applications as it appears to solve the humidity sensitivity problem suffered by the PMMA FBG. © 2011 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel device for the detection and characterisation of static magnetic fields is presented. It consists of a femtosecond laser inscribed fibre Bragg grating (FBG) that is incorporated into an optical fibre with a femtosecond laser micromachined slot. The symmetry of the fibre is broken by the micro-slot, producing non-uniform strain across the fibre cross section. The sensing region is coated with Terfenol-D making the device sensitive to static magnetic fields, whereas the symmetry breaking results in a vectorial sensor for the detection of magnetic fields as low as 0.046 mT with a resolution of ±0.3mT in transmission and ±0.7mT in reflection. The sensor output is directly wavelength encoded from the FBG filtering, leading to simple demodulation through the monitoring of wavelength shifts that result as the fibre structure changes shape in response to the external magnetic field. The use of a femtosecond laser to both inscribe the FBG and micro-machine the slot in a single stage, prior to coating the device, significantly simplifies the sensor fabrication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of ultra-long (UL) cavity (hundreds of meters to several kilometres) mode-locked fibre lasers for the generation of high-energy light pulses with relatively low (sub-megahertz) repetition rates has emerged as a new rapidly advancing area of laser physics. The first demonstration of high pulse energy laser of this type was followed by a number of publications from many research groups on long-cavity Ytterbium and Erbium lasers featuring a variety of configurations with rather different mode-locked operations. The substantial interest to this new approach is stimulated both by non-trivial underlying physics and by the potential of high pulse energy laser sources with unique parameters for a range of applications in industry, bio-medicine, metrology and telecommunications. It is well known, that pulse generation regimes in mode-locked fibre lasers are determined by the intra-cavity balance between the effects of dispersion and non-linearity, and the processes of energy attenuation and amplification. The highest per-pulse energy has been achieved in normal-dispersion UL fibre lasers mode-locked through nonlinear polarization evolution (NPE) for self-modelocking operation. In such lasers are generated the so-called dissipative optical solitons. The uncompensated net normal dispersion in long-cavity resonatorsusually leads to very high chirp and, consequently, to a relatively long duration of generated pulses. This thesis presents the results of research Er-doped ultra-long (more than 1 km cavity length) fibre lasers mode-locked based on NPE. The self-mode-locked erbium-based 3.5-km-long all-fiber laser with the 1.7 µJ pulse energy at a wavelength of 1.55 µm was developed as a part of this research. It has resulted in direct generation of short laser pulses with an ultralow repetition rate of 35.1 kHz. The laser cavity has net normal-dispersion and has been fabricated from commercially-available telecom fibers and optical-fiber elements. Its unconventional linear-ring design with compensation for polarization instability ensures high reliability of the self-mode-locking operation, despite the use of a non polarization-maintaining fibers. The single pulse generation regime in all-fibre erbium mode-locking laser based on NPE with a record cavity length of 25 km was demonstrated. Modelocked lasers with such a long cavity have never been studied before. Our result shows a feasibility of stable mode-locked operation even for an ultra-long cavity length. A new design of fibre laser cavity – “y-configuration”, that offers a range of new functionalities for optimization and stabilization of mode-locked lasing regimes was proposed. This novel cavity configuration has been successfully implemented into a long-cavity normal-dispersion self-mode-locked Er-fibre laser. In particular, it features compensation for polarization instability, suppression of ASE, reduction of pulse duration, prevention of in-cavity wave breaking, and stabilization of the lasing wavelength. This laser along with a specially designed double-pass EDFA have allowed us to demonstrate anenvironmentally stable all-fibre laser system able to deliver sub-nanosecond high-energy pulses with low level of ASE noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 1.2 µm (height) × 125 µm (depth) × 500 µm (length) microslot along a fiber Bragg grating was engraved across the optical fiber by femtosecond laser patterning and chemical etching. By filling epoxy in the slot and subsequent UV curing, a hybrid waveguide grating structure with a polymer core and glass cladding was fabricated. The obtained device is highly thermally responsive with linear coefficient of 211 pm/°C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and demonstrate novel virtual Gires-Tournois (GT) etalons based on fiber gratings. By introducing an additional phase modulation in wideband linearly chirped fiber Bragg gratings, we have successfully generated GT resonance with only one grating. This technique can simplify the fabrication procedure while retaining the normal advantages of distributed etalons, including their full compatibility with optical fiber, low insertion loss, and low cost. Such etalons can be used as dispersion compensation devices in optical transmission systems. © 2007 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the impact of the shape of fibre Bragg gratings spectral reflectivity on spectral broadening in a 10 km Raman fibre laser. We show that, at high powers, spectral characteristics are determined by intra-cavity processes rather than by the gratings profile.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review recent progress in optical wave turbulence with a specific focus on the fast growing field of fibre lasers. Weak irregular nonlinear interactions between a large number of resonator modes are responsible for practically important characteristics of fibre lasers such as spectral broadening of radiation. Wave turbulence is a fundamental nonlinear phenomenon which occurs in a variety of nonlinear wave-bearing physical systems. The experimental impediments and the computationally intensive nature of simulating of hydrodynamic or plasma wave turbulence often make it rather challenging to collect a significant number of statistical data The study of turbulent wave behaviour in optical devices offers quite a unique opportunity to collect an enormous amount of data on statistical properties of wave turbulence using high-speed, high precision optical measurements during a relatively short period of time. We present recent theoretical, numerical and experimental results on optical wave turbulence in fibre lasers ranging from weak to strong developed turbulence for different signs of fibre dispersion. Furthermore, we report on our studies of spectral wave condensate in fibre lasers that make interdisciplinary links with a number of other research fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper compares the environmental sensing behaviour of long period gratings written in three fibers with different refractive index profiles: step, W and a progressive three layered fiber. The measurands considered are temperature, refractive index, axial strain and bending, and the spectral behaviour of individual attenuation bands were observed and, where possible, compared to theoretical predictions. Significant differences in the behaviour of the three fiber types were found. © 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the development of superstructure fiber gratings (SFG) in Ge-doped, silica optical fiber using femtosecond laser inscription. We apply a simple but extremely effective single step process to inscribe low loss, sampled gratings with minor polarization dependence. The method results in a controlled modulated index change with complete suppression of mode coupling associated with the overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. The devices are characterized and compared with numerical modeling by solving Maxwell's equations and calculating the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis, allowing for the estimation of inscription parameters such as the ac index modulation change, and the wavelength, position and relative strength of each significant resonance peak. We also present results on temperature and refractive index measurements showing potential for sensing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a novel in-fibre twist sensor utilising strong polarisation dependent coupling behaviour of fiber Bragg grating with 81° tilted structure. The demonstrated twist sensor has shown high torsion sensitivity and capability of direction recognition.