954 resultados para Greenhouse Gases


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study applies a Marxist theoretical paradigm to examine the working conditions of greenhouse workers in the Niagara Region, and the range of factors that bear upon the formation of their class-consciousness. The Niagara greenhouse industry represents one of the most developed horticultural regions in Canada and plays a prominent role in the local economy. The industry generates substantial revenues and employs a significant number of people, yet the greenhouse workers are paid one of the lowest rates in the region. Being classified as agricultural workers, the greenhouse employees are exempted from many provisions of federal and provincial labour regulations. Under the current provincial statutes, agricultural workers in Ontario are denied the right to organize and bargain collectively. Except for a few technical and managerial positions, the greenhouse industry employs mostly low-skilled workers who are subjected to poor working conditions that stem from the employer's attempts to adapt to larger structural imperatives of the capitalist economy. While subjected to these poor working conditions, the greenhouse workers are also affected by objectively alienated social relations and by ruling class ideological domination and hegemony. These two sets of factors arise from the inherent conflict of interests between wage-labour and capital but also militate against the development of class-consciousness. Semi-structured interviews were conducted with 12 greenhouse workers to examine the role played by their material circumstances in the formulation of their social and political views as well as the extent to which they are aware of their class location and class interests. The hegemonic notions of 'common sense' acted as impediments to formation of classconsciousness. The greenhouse workers have virtually no opportunities to access alternative perspectives that would address the issues associated with exploitation in production and offer solutions leading to 'social justice'. Fonnidable challenges confront any organized political body seeking to improve the conditions of the working people.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Beckman Helium Discharge Detector has been found to be sensitive to the fixed gases oxygen, nitrogen, and hydrogen at detection levels 10-100 times more sensitive than possible with a Bow-Mac Thermal Conductivity Detector. Detection levels o~ approximately 1.9 E-4 ~ v/v oxygen, 3.1 E-4 ~ v/v nitrogen, and 3.0 E-3 ~ v/v hydrogen are estimated. Response of the Helium Discharge Detector was not linear, but is useable for quantitation over limited ranges of concentration using suitably prepared working standards. Cleanliness of the detector discharge electrodes and purity of the helium carrier and discharge gas were found to be critical to the operation of the detector. Higher sensitivities of the Helium Discharge Detector may be possible by the design and installation of a sensitive, solid-state electrometer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias con Especialidad en Química Analítica Biomédica) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en la Enseñanza de la Ciencia con Especialidad en Química) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestría en Ciencias en Producción Agrícola) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Ingeniería Mecánica con Especialidad en Térmica y Fluidos - Universidad Autónoma de Nuevo León, 1999

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Maestro en Ciencias de la Ingeniería Eléctrica con Especialidad en Control) UANL, 2000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctorado en Ciencias Agrícolas con Especialidad en Agua-Suelo) UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tesis (Doctor en Ciencias con Acentuación en Alimentos) UANL, 2010.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main challenges in the development of metal-oxide gas sensors is enhancement of selectivity to a particular gas. Currently, two general approaches exist for enhancing the selective properties of sensors. The first one is aimed at preparing a material that is specifically sensitive to one compound and has low or zero cross-sensitivity to other compounds that may be present in the working atmosphere. To do this, the optimal temperature, doping elements, and their concentrations are investigated. Nonetheless, it is usually very difficult to achieve an absolutely selective metal oxide gas sensor in practice. Another approach is based on the preparation of materials for discrimination between several analyte in a mixture. It is impossible to do this by using one sensor signal. Therefore, it is usually done either by modulation of sensor temperature or by using sensor arrays. The present work focus on the characterization of n-type semiconducting metal oxides like Tungsten oxide (WO3), Zinc Oxide (ZnO) and Indium oxide (In2O3) for the gas sensing purpose. For the purpose of gas sensing thick as well as thin films were fabricated. Two different gases, NO2 and H2S gases were selected in order to study the gas sensing behaviour of these metal oxides. To study the problem associated with selectivity the metal oxides were doped with metals and the gas sensing characteristics were investigated. The present thesis is entitled “Development of semiconductor metal oxide gas sensors for the detection of NO2 and H2S gases” and consists of six chapters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cement industry ranks 2nd in energy consumption among the industries in India. It is one of the major emitter of CO2, due to combustion of fossil fuel and calcination process. As the huge amount of CO2 emissions cause severe environment problems, the efficient and effective utilization of energy is a major concern in Indian cement industry. The main objective of the research work is to assess the energy cosumption and energy conservation of the Indian cement industry and to predict future trends in cement production and reduction of CO2 emissions. In order to achieve this objective, a detailed energy and exergy analysis of a typical cement plant in Kerala was carried out. The data on fuel usage, electricity consumption, amount of clinker and cement production were also collected from a few selected cement industries in India for the period 2001 - 2010 and the CO2 emissions were estimated. A complete decomposition method was used for the analysis of change in CO2 emissions during the period 2001 - 2010 by categorising the cement industries according to the specific thermal energy consumption. A basic forecasting model for the cement production trend was developed by using the system dynamic approach and the model was validated with the data collected from the selected cement industries. The cement production and CO2 emissions from the industries were also predicted with the base year as 2010. The sensitivity analysis of the forecasting model was conducted and found satisfactory. The model was then modified for the total cement production in India to predict the cement production and CO2 emissions for the next 21 years under three different scenarios. The parmeters that influence CO2 emissions like population and GDP growth rate, demand of cement and its production, clinker consumption and energy utilization are incorporated in these scenarios. The existing growth rate of the population and cement production in the year 2010 were used in the baseline scenario. In the scenario-1 (S1) the growth rate of population was assumed to be gradually decreasing and finally reach zero by the year 2030, while in scenario-2 (S2) a faster decline in the growth rate was assumed such that zero growth rate is achieved in the year 2020. The mitigation strategiesfor the reduction of CO2 emissions from the cement production were identified and analyzed in the energy management scenarioThe energy and exergy analysis of the raw mill of the cement plant revealed that the exergy utilization was worse than energy utilization. The energy analysis of the kiln system showed that around 38% of heat energy is wasted through exhaust gases of the preheater and cooler of the kiln sysetm. This could be recovered by the waste heat recovery system. A secondary insulation shell was also recommended for the kiln in the plant in order to prevent heat loss and enhance the efficiency of the plant. The decomposition analysis of the change in CO2 emissions during 2001- 2010 showed that the activity effect was the main factor for CO2 emissions for the cement industries since it is directly dependent on economic growth of the country. The forecasting model showed that 15.22% and 29.44% of CO2 emissions reduction can be achieved by the year 2030 in scenario- (S1) and scenario-2 (S2) respectively. In analysing the energy management scenario, it was assumed that 25% of electrical energy supply to the cement plants is replaced by renewable energy. The analysis revealed that the recovery of waste heat and the use of renewable energy could lead to decline in CO2 emissions 7.1% for baseline scenario, 10.9 % in scenario-1 (S1) and 11.16% in scenario-2 (S2) in 2030. The combined scenario considering population stabilization by the year 2020, 25% of contribution from renewable energy sources of the cement industry and 38% thermal energy from the waste heat streams shows that CO2 emissions from Indian cement industry could be reduced by nearly 37% in the year 2030. This would reduce a substantial level of greenhouse gas load to the environment. The cement industry will remain one of the critical sectors for India to meet its CO2 emissions reduction target. India’s cement production will continue to grow in the near future due to its GDP growth. The control of population, improvement in plant efficiency and use of renewable energy are the important options for the mitigation of CO2 emissions from Indian cement industries

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Khartoum (Sudan) a particular factor shaping urban land use is the rapid expansion of red brick making (BM) for the construction of houses which occurs on the most fertile agricultural Gerif soils along the Nile banks. The objectives of this study were to assess the profitability of BM, to explore the income distribution among farmers and kiln owners, to measure the dry matter (DM), nitrogen (N), phosphorus (P), potassium (K) and organic carbon (C_org) in cow dung used for BM, and to estimate the greenhouse gas (GHG) emissions from burned biomass fuel (cow dung and fuel wood). About 49 kiln owners were interviewed in 2009 using a semi-structured questionnaire that allowed to record socio-economic and variable cost data for budget calculations, and determination of Gini coefficients. Samples of cow dung were collected directly from the kilns and analyzed for their nutrients concentrations. To estimate GHG emissions a modified approach of the Intergovernmental Panel on Climate Change (IPCC) was used. The land rental value from red brick kilns was estimated at 5-fold the rental value from agriculture and the land rent to total cost ratio was 29% for urban farms compared to 6% for BM. The Gini coefficients indicated that income distribution among kiln owners was more equal than among urban farmers. Using IPCC default values the 475, 381, and 36 t DM of loose dung, compacted dung, and fuel wood used for BM emit annually 688, 548, and 60 t of GHGs, respectively.