996 resultados para Great Artesian Basin
Resumo:
Course Scheduling consists of assigning lecture events to a limited set of specific timeslots and rooms. The objective is to satisfy as many soft constraints as possible, while maintaining a feasible solution timetable. The most successful techniques to date require a compute-intensive examination of the solution neighbourhood to direct searches to an optimum solution. Although they may require fewer neighbourhood moves than more exhaustive techniques to gain comparable results, they can take considerably longer to achieve success. This paper introduces an extended version of the Great Deluge Algorithm for the Course Timetabling problem which, while avoiding the problem of getting trapped in local optima, uses simple Neighbourhood search heuristics to obtain solutions in a relatively short amount of time. The paper presents results based on a standard set of benchmark datasets, beating over half of the currently published best results with in some cases up to 60% of an improvement.
Resumo:
The utilization of the computational Grid processor network has become a common method for researchers and scientists without access to local processor clusters to avail of the benefits of parallel processing for compute-intensive applications. As a result, this demand requires effective and efficient dynamic allocation of available resources. Although static scheduling and allocation techniques have proved effective, the dynamic nature of the Grid requires innovative techniques for reacting to change and maintaining stability for users. The dynamic scheduling process requires quite powerful optimization techniques, which can themselves lack the performance required in reaction time for achieving an effective schedule solution. Often there is a trade-off between solution quality and speed in achieving a solution. This paper presents an extension of a technique used in optimization and scheduling which can provide the means of achieving this balance and improves on similar approaches currently published.