961 resultados para Granule Secretion
IL10 and IL12B polymorphisms each influence IL-12p70 secretion by dendritic cells in response to LPS
Resumo:
Dendritic cells (DC) are the main producers of the cytokine IL-12p70, through which they play a direct role in the development of IFN-gamma-secreting Th1 cells, costimulation of CTL differentiation and NK-cell activation. In contrast, IL-10, which is also produced by DC, negatively regulates IL-12 production. IL-12p70 production varies widely between individuals, and several polymorphisms in the gene encoding IL-12p40 (IL12B) have been identified that influence susceptibility and severity of infectious, autoimmune and neoplastic disease. Here we show that polymorphisms not only of IL12B, but also in the IL10 promoter, influence IL-12p70 secretion by monocyte-derived DC in response to LPS. Although IL12B promoter homozygotes were prone to making more IL-12p70, presence of the IL10 high genotype restricted IL-12p70 production in these individuals. These observations provide a further genetic control of IL-12p70 regulation and emphasize the complexity of production of this cytokine. They also suggest genotypes that might influence the outcome of DC immunotherapy.
Resumo:
The role of non-carbohydrate surface components of granular starch in determining gelatinisation behaviour has been tested by treatment of native starches with a range of extractants. Resulting washed starches were analysed for (bio)chemical, calorimetric and theological properties. Sodium dodecyl sulphate (SDS) was the most efficient extractant tested, and resulted in major changes to the subsequent theological properties of wheat and maize starches but not other starches. Three classes of starch granule swelling behaviour are identified: (i) rapid swelling (e.g. waxy maize, potato), (ii) slow swelling that can be converted to rapid swelling by extraction of surface proteins and lipids (e.g. wheat, maize), and (iii) limited swelling not affected by protein/lipid extraction (e.g. high amylose maize/potato). Comparison of a range of extractants suggests that all of protein, lipid and amylose are involved in restriction of swelling for wheat or maize starches. Treatment of starches with SDS leads to a residue at comparable (low) levels of SDS for all starches. C-13 NMR analysis shows that this SDS is present as a glucan inclusion complex, even for waxy maize starch. We infer that under the conditions used, glucan inclusion complexation of SDS is equally likely with amylopectin as with amylose. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The medically significant genus Chlamydia is a class of obligate intracellular bacterial pathogens that replicate within vacuoles in host eukaryotic cells termed inclusions. Chlamydia's developmental cycle involves two forms; an infectious extracellular form, known as an elementary body (EB), and a non-infectious form, known as the reticulate body (RB), that replicates inside the vacuoles of the host cells. The RB surface is covered in projections that are in intimate contact with the inclusion membrane. Late in the developmental cycle, these reticulate bodies differentiate into the elementary body form. In this paper, we present a hypothesis for the modulation of these developmental events involving the contact-dependent type III secretion (TTS) system. TTS surface projections mediate intimate contact between the RB and the inclusion membrane. Below a certain number of projections, detachment of the RB provides a signal for late differentiation of RB into EB. We use data and develop a mathematical model investigating this hypothesis. If the hypothesis proves to be accurate, then we have shown that increasing the number of inclusions per host cell will increase the number of infectious progeny EB until some optimal number of inclusions. For more inclusions than this optimum, the infectious yield is reduced because of spatial restrictions. We also predict that a reduction in the number of projections on the surface of the RB (and as early as possible during development) will significantly reduce the burst size of infectious EB particles. Many of the results predicted by the model can be tested experimentally and may lead to the identification of potential targets for drug design. © Society for Mathematical Biology 2006.
Resumo:
Increasing evidence suggests that tissue transglutaminase (tTGase; type II) is externalized from cells, where it may play a key role in cell attachment and spreading and in the stabilization of the extracellular matrix (ECM) through protein cross-linking. However, the relationship between these different functions and the enzyme's mechanism of secretion is not fully understood. We have investigated the role of tTGase in cell migration using two stably transfected fibroblast cell lines in which expression of tTGase in its active and inactive (C277S mutant) states is inducible through the tetracycline-regulated system. Cells overexpressing both forms of tTGase showed increased cell attachment and decreased cell migration on fibronectin. Both forms of the enzyme could be detected on the cell surface, but only the clone overexpressing catalytically active tTGase deposited the enzyme into the ECM and cell growth medium. Cells overexpressing the inactive form of tTGase did not deposit the enzyme into the ECM or secrete it into the cell culture medium. Similar results were obtained when cells were transfected with tTGase mutated at Tyr(274) (Y274A), the proposed site for the cis,trans peptide bond, suggesting that tTGase activity and/or its tertiary conformation dependent on this bond may be essential for its externalization mechanism. These results indicate that tTGase regulates cell motility as a novel cell-surface adhesion protein rather than as a matrix-cross-linking enzyme. They also provide further important insights into the mechanism of externalization of the enzyme into the extracellular matrix.
Resumo:
The delicately orchestrated process of bone fracture healing is not always successful and long term non union of fractured bone occurs in 5-20% of all cases. Atrophic fracture non unions have been described as the most difficult to treat and this is thought to arise through a cellular and local failure of osteogenesis. However, little is known about the presence and osteogenic proficiency of cells in the local area of non union tissue. We have examined the growth and differentiation potential of cells isolated from human non union tissues compared with normal human bone marrow mesenchymal stromal cells (BMSC). We report the isolation and culture expansion of a population of non union stromal cells (NUSC) which have a CD profile similar to that of BMSC, i.e. CD34-ve, CD45-ve and CD105+ve. The NUSC demonstrated multipotentiality and differentiated to some extent along chondrogenic, adipogenic and osteogenic lineages. However, and importantly, the NUSC showed significantly reduced osteogenic differentiation and mineralization in vitro compared to BMSC. We also found increased levels of cell senescence in NUSC compared to BMSC based on culture growth kinetics and cell positivity for senescence associated beta galactosidase (SA-beta-Gal) activity. The reduced capacity of NUSC to form osteoblasts was associated with significantly elevated secretion of Dickkopf-1 (Dkk-1) which is an important inhibitor of Wnt signalling during osteogenesis, compared to BMSC. Conversely, treating BMSC with levels of rhDkk-1 that were equivalent to those levels secreted by NUSC inhibited the capacity of BMSC to undergo osteogenesis. Treating BMSC with NUSC conditioned medium also inhibited the capacity of the BMSC to undergo osteogenic differentiation when compared to their treatment with BMSC conditioned medium. Our results suggest that the development of fracture non union is linked with a localised reduced capacity of cells to undergo osteogenesis, which in turn is associated with increased cell senescence and Dkk-1 secretion.