957 resultados para Geological Sequestration


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although Basin and Range style extension affected several areas of western Mexico since the Late Eocene, extension in the Gulf of California region (the Gulf Extensional Province GEP) is thought to have started as subduction waned and ended at ~14 12.5 Ma. A general consensus also exists in considering the mid Miocene Comondú group as a suprasubduction volcanic arc. Our new integration of the geology of the south east Gulf region, backed by 43 new Ar Ar and U Pb mineral ages and geochemical studies, document a widespread phase of extension in the southern GEP between latest Oligocene and Early Miocene that subsequently focused in the region of the future Gulf in the Middle Miocene. Upper Oligocene to Lower Miocene rocks across the southern Sierra Madre Occidental (SMO)(northern Nayarit and southern Sinaloa) were affected by major ~N S to NNW striking normal faults prior to ~21 Ma. Then, between ~21 and 11 Ma, a system of NNW-SSE high angle extensional faults continued extending the southwestern side of the SMO. Rhyolitic domes, shallow intrusive bodies, and lesser basalts were emplaced along this extensional belt at 20-17 Ma. In northern Sinaloa, large grabens were floored by huge dome complexes at ~21-17 Ma and filled by continental sediments with interlayered basalts dated at 15-14 Ma, a setting and timing very similar to Sonora. Early to Middle Miocene volcanism, including the largely volcaniclastic Comondú strata in Baja California Sur, was thus emplaced in rift basins and was likely associated to decompression melting of upper mantle (inducing crustal partial melting) rather than to fluxing by fluids from the young subducting plate. Along the Nayarit and Sinaloa coast, flatlying basaltic lava flows dated at 11-10 Ma are exposed just above the present sea level. Here, crustal thickness is almost half that in the unextended core of the SMO, implying significant lithosphere stretching before ~11 Ma. Our study shows that rifting began much earlier than Late Miocene and provided a fundamental control on the style and composition of volcanism from at least 30 Ma. We envision a sustained period of lithospheric stretching and magmatism during which the pace and breadth of extension changed at ~20-18 Ma to be narrower and likely more rapid, and again at ~12.5 Ma, when the kinematics of rifting became more oblique.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Early–mid Cretaceous marks the confluence of three major continental-scale events in eastern Gondwana: (1) the emplacement of a Silicic Large Igneous Province (LIP) near the continental margin; (2) the volcaniclastic fill, transgression and regression of a major epicontinental seaway developed over at least a quarter of the Australian continent; and (3) epeirogenic uplift, exhumation and continental rupturing culminating in the opening of the Tasman Basin c. 84 Ma. The Whitsunday Silicic LIP event had widespread impact, producing both substantial extrusive volumes of dominantly silicic pyroclastic material and coeval first-cycle volcanogenic sediment that accumulated within many eastern Australian sedimentary basins, and principally in the Great Australian Basin system (>2 Mkm3 combined volume). The final pulse of volcanism and volcanogenic sedimentation at c. 105–95 Ma coincided with epicontinental seaway regression, which shows a lack of correspondence with the global sea-level curve, and alternatively records a wider, continental-scale effect of volcanism and rift tectonism. Widespread igneous underplating related to this LIP event is evident from high paleogeothermal gradients and regional hydrothermal fluid flow detectable in the shallow crust and over a broad region. Enhanced CO2 fluxing through sedimentary basins also records indirectly, large-scale, LIP-related mafic underplating. A discrete episode of rapid crustal cooling and exhumation began c. 100–90 Ma along the length of the eastern Australian margin, related to an enhanced phase of continental rifting that was largely amagmatic, and probably a switch from wide–more narrow rift modes. Along-margin variations in detachment fault architecture produced narrow (SE Australia) and wide continental margins with marginal, submerged continental plateaux (NE Australia). Long-lived NE-trending cross-orogen lineaments controlled the switch from narrow to wide continental margin geometries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This chapter describes the later Mesozoic history of Queensland, when the broad epicratonic basins that underlie most of the state west of the Great Dividing Range received the greater part of their sediment infill after ~210 Ma(middle Norian). The final major orogenic event—the Hunter Bowen Orogeny—had abated in the Tasmanides. These basins preserve relatively thin sedimentary successions that extend over about two-thirds of the area of the state...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The composition of the lithosphere can be fundamentally altered by long-lived subduction processes such that subduction-modified lithosphere can survive for 100's Myrs. Incorrect petrotectonic interpretations result when spatial-temporal-compositional trends of, and source contributions to, magmatism are not properly considered. Western Mexico has had protracted Cenozoic magmatism developed mostly in-board of active oceanic plate subduction beneath western North America. A broad range of igneous compositions from basalt to high-silica rhyolite were erupted with intermediate to silicic compositions in particular, showing calc-alkaline and other typical subduction-related geochemical signatures. A major Oligocene rhyolitic ignimbrite “flare-up” (>300,000 km3) switched to a bimodal volcanic phase in the Early Miocene (~100,000 km3), associated with distributed extension and opening of numerous grabens. Extension became more focussed ~18 Ma resulting in localised volcanic activity along the future site of the Gulf of California. This localised volcanism (known as the Comondú “arc”) was dominantly effusive and andesite-dacite in composition. Past tectonic interpretations of Comondú-age volcanism may have been incorrect as these regional temporal-compositional changes are alternatively interpreted as a result of increased mixing of mantle-derived basaltic and crust-derived rhyolitic magmas in an active rift environment rather than fluid flux melting of the mantle wedge above the subducting Guadalupe Plate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large Igneous Provinces are exceptional intraplate igneous events throughout Earth’s history. Their significance and potential global impact is related to the total volume of magma intruded and released during these geologically brief events (peak eruptions are often within 1-5 Myrs duration) where millions to tens of millions of cubic kilometers of magma are produced. In some cases, at least 1% of the Earth’s surface has been directly covered in volcanic rock, being equivalent to the size of small continents with comparable crustal thicknesses. Large Igneous Provinces are thus important, albeit episodic episodes of new crust addition. However, most magmatism is basaltic so that contributions to crustal growth will not always be picked up in zircon geochronology studies that better trace major episodes of extension-related silicic magmatism and the silicic Large Igneous Provinces. Much headway has been made on our understanding of these anomalous igneous events over the last 25 years, driving many new ideas and models. This includes their: 1) global spatial and temporal distribution, with a long-term average of one event approximately every 20 Myrs, but a clear clustering of events at times of supercontinent break-up – Large Igneous Provinces are thus an integral part of the Wilson cycle and are becoming an increasingly important tool in reconnecting dispersed continental fragments; 2) compositional diversity that in part reflects their crustal setting of ocean basins, and continental interiors and margins where in the latter setting, LIP magmatism can be silicicdominant; 3) mineral and energy resources with major PGE and precious metal resources being hosted in these provinces, as well as magmatism impacting on the hydrocarbon potential of volcanic basins and rifted margins through enhancing source rock maturation, providing fluid migration pathways, and trap formation; 4) biospheric, hydrospheric and atmospheric impacts, with Large Igneous Provinces now widely regarded as a key trigger mechanism for mass extinctions, although the exact kill mechanism(s) are still being resolved; 5) role in mantle geodynamics and thermal evolution of the Earth, by potentially recording the transport of material from the lower mantle or core-mantle boundary to the Earth's surface and being a fundamental component in whole mantle convection models; and 6) recognition on the inner planets where the lack of plate tectonics and erosional processes and planetary antiquity means that the very earliest record of LIP events during planetary evolution may be better preserved than on Earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Gulf of California (GoC) has been an important focus site for understanding the spatial and temporal evolution of rifts, with recent studies concluding: 1) rapid crustal rupturing within 10 Myrs; 2) surprisingly abrupt variations in rifting style and magmatism with apparently wide magma-poor and narrow, magmatic rift segments; and 3) that high sedimentation rates may promote switching from wide to narrow rift modes or thermally blanket the crust to enhance rift magmatism. Critical to these conclusions is the onset of rifting at~12 Ma following the cessation of subduction. New field-based volcanostratigraphic and geochronologic studies along the southeastern GoC margin reveal Early Miocene (~25-18 Ma) bimodal volcanism in wide rifting mode (~400 km width), followed by a mid-Miocene (~18-12 Ma) phase of dominantly intermediate composition magmatism in and around the nascent GoC with lavas/domes often emplaced into actively subsiding basins, but contemporaneous with bimodal volcanism regionally. Flat-lying intraplate basaltic lava fields emplaced ~12-10 Ma along the GoC east coast abut tilted blocks of ~20 Ma ignimbrites onshore, and also occur offshore. The reduction in crustal thickness from ~55 to 20 km along the eastern GoC edge must have been largely achieved by 12 Ma. Extension has demonstrably began earlier than previously thought, downplaying rapid rifting and any thermal effects from <6 Ma sedimentation. New age data from onshore indicate significant structurally controlled corridors of magmatism during 18-12 Ma extension in apparently magma-poor rift segments, and this magmatism temporally coincides with the switch from wide to narrow rifting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LIP emplacement is linked to the timing and evolution of supercontinental break-up. LIP-related break-up produces volcanic rifted margins, new and large (up to 108 km2) ocean basins, and new, smaller continents that undergo dispersal and potentially reassembly (e.g., India). However, not all continental LIPs lead to continental rupture. We analysed the <330 Ma continental LIP record(following final assembly of Pangea) to find relationships between LIP event attributes (e.g., igneous volume, extent, distance from pre-existing continental margin) and ocean basin attributes (e.g., length of new ocean basin/rifted margin) and how these varied during the progressive break up of Pangea. No correlation exists between LIP magnitude and size of the subsequent ocean basin or rifted margin. Our review suggests a three-phased break-up history of Pangea: 1) “Preconditioning” phase (∼330–200 Ma): LIP events (n=7) occurred largely around the supercontinental margin clustering today in Asia, with a low (<20%) rifting success rate. The Panjal Traps at ∼280 Ma may represent the first continental rupturing event of Pangea, resulting in continental ribboning along the Tethyan margin; 2) “Main Break-up” phase (∼200–100 Ma): numerous large LIP events(n=10) in the supercontinent interior, resulting in highly successful fragmentation (90%) and large, new ocean basins(e.g., Central/South Atlantic, Indian, >3000 km long); 3) “Waning” phase (∼100–0 Ma): Declining LIP magnitudes (n=6), greater proximity to continental margins (e.g., Madagascar, North Atlantic, Afro-Arabia, Sierra Madre) producing smaller ocean basins (<2600 km long). How Pangea broke up may thus have implications for earlier supercontinent reconstructions and LIP record.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Across central Australia and south-west Queensland, a large (~800,000km2) subsurface temperature anomaly occurs (Figure 1). Temperatures are interpreted to be greater than 235°C at 5km depth, ca. 85°C higher than the average geothermal gradient for the upper continental crust (Chopra & Holgate, 2005; Holgate & Gerner, 2011). This anomaly has driven the development of Engineered Geothermal Systems (EGS) at Innamincka, where high temperatures have been related to the radiogenic heat production of High Heat Producing Granites (HHPG) at depth, below thermally insulative sedimentary cover (Chopra & Holgate, 2005; Draper & D’Arcy, 2006; Meixner & Holgate, 2009). To evaluate the role of granitic rocks at depth in generating the broader temperature anomaly in SW-Queensland, we sampled 25 granitic rocks from basement intervals of petroleum drill cores below thermal insulative cover along two transects (WNW–ESE and NNE–SSW — Figure 1) and performed a multidisciplinary study involving petrography, whole-rock chemistry, zircon dating and thermal conductivity measurements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grasslands occupy approximately half of the ice-free land area of the world, make up about 70 percent of the world's agricultural area, and are an important agricultural resource, particularly in areas where people are among the most food insecure. Despite their significant potential for carbon (C) sequestration and emission reductions, they are currently not included in international agreements to reduce greenhouse gas (GHG) emissions. The chapters in this book have presented new data on management systems that could sequester C in the soil or biomass, assessed the policy and economic aspects of C sequestration in grassland soils, and evaluated limitations and those techniques required to capitalize on grassland C sequestration as a viable component of mitigation strategy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We applied small-angle neutron scattering (SANS) and ultra small-angle neutron scattering (USANS) to monitor evolution of the CO2 adsorption in porous silica as a function of CO2 pressure and temperature in pores of different sizes. The range of pressures (0 < P < 345 bar) and temperatures (T=18 OC, 35 OC and 60 OC) corresponded to subcritical, near critical and supercritical conditions of bulk fluid. We observed that the adsorption behavior of CO2 is fundamentally different in large and small pores with the sizes D > 100 Å and D < 30 Å, respectively. Scattering data from large pores indicate formation of a dense adsorbed film of CO2 on pore walls with the liquid-like density (ρCO2)ads≈0.8 g/cm3. The adsorbed film coexists with unadsorbed fluid in the inner pore volume. The density of unadsorbed fluid in large pores is temperature and pressure dependent: it is initially lower than (ρCO2)ads and gradually approaches it with pressure. In small pores compressed CO2 gas completely fills the pore volume. At the lowest pressures of the order of 10 bar and T=18 OC, the fluid density in smallest pores available in the matrix with D ~ 10 Å exceeds bulk fluid density by a factor of ~ 8. As pressure increases, progressively larger pores become filled with the condensed CO2. Fluid densification is only observed in pores with sizes less than ~ 25 – 30 Å. As the density of the invading fluid reaches (ρCO2)bulk~ 0.8 g/cm3, pores of all sizes become uniformly filled with CO2 and the confinement effects disappear. At higher densities the fluid in small pores appears to follow the equation of state of bulk CO2 although there is an indication that the fluid density in the inner volume of large pores may exceed the density of the adsorbed layer. The equivalent internal pressure (Pint) in the smallest pores exceeds the external pressure (Pext) by a factor of ~ 5 for both sub- and supercritical CO2. Pint gradually approaches Pext as D → 25 – 30 Å and is independent of temperature in the studied range of 18 OC ≤ T ≤ 60 OC. The obtained results demonstrate certain similarity as well as differences between adsorption of subcritical and supercritical CO2 in disordered porous silica. High pressure small angle scattering experiments open new opportunities for in situ studies of the fluid adsorption in porous media of interest to CO2 sequestration, energy storage, and heterogeneous catalysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stichtite is a naturally occurring layered double hydroxide (LDH) with the ideal chemical formula Mg6Cr2CO3(OH)16·4H2O. It has received less attention in the literature than other LDHs and is often described as a rare mineral; however, abundant deposits of the mineral do exist. In this article we aim to review a number of significant publications concerning the mineral stichtite, including papers covering the discovery, geological origin, synthesis and characterizsation of stichtite. Characterization techniques reviewed include powder X-ray diffraction (XRD), infrared spectroscopy (IR), near infrared spectroscopy (NIR), Raman spectroscopy (Raman), thermogravimetry (TG) and electron microprobe analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The issue of carbon sequestration rights has become topical following the United Nations Convention on Climate Change (United Nations 1992 at page 1414) and the subsequent Kyoto Protocol (United Nations Climate Change Secretariat 1998) which identified emissions trading as one of the mechanisms to reduce greenhouse gas emissions. Australian states have responded by creating a legal framework for the recognition of rights to bio-sequestered carbon. There is a lack of uniformity in the approach of each state to the recognition of these rights, which vary from the creation of new and novel interests in land to the adoption of more traditional rights such as a profit a prendre. Rights to bio-sequestered carbon are likely to have an impact on the utility, marketability, value and financing of rural land holdings. Despite the creation of the legal framework for recognition of rights to sequestrated carbon, there has been a delay in the introduction of a formalised carbon trading scheme in Australia. In the absence of an established carbon market, this paper addresses the applicability of contingent valuation theory to assess the value of bio-sequestered carbon rights to a rural land holder. Limitations and potential controversies associated with this application of contingent valuation theory are also addressed in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Management of groundwater systems requires realistic conceptual hydrogeological models as a framework for numerical simulation modelling, but also for system understanding and communicating this to stakeholders and the broader community. To help overcome these challenges we developed GVS (Groundwater Visualisation System), a stand-alone desktop software package that uses interactive 3D visualisation and animation techniques. The goal was a user-friendly groundwater management tool that could support a range of existing real-world and pre-processed data, both surface and subsurface, including geology and various types of temporal hydrological information. GVS allows these data to be integrated into a single conceptual hydrogeological model. In addition, 3D geological models produced externally using other software packages, can readily be imported into GVS models, as can outputs of simulations (e.g. piezometric surfaces) produced by software such as MODFLOW or FEFLOW. Boreholes can be integrated, showing any down-hole data and properties, including screen information, intersected geology, water level data and water chemistry. Animation is used to display spatial and temporal changes, with time-series data such as rainfall, standing water levels and electrical conductivity, displaying dynamic processes. Time and space variations can be presented using a range of contouring and colour mapping techniques, in addition to interactive plots of time-series parameters. Other types of data, for example, demographics and cultural information, can also be readily incorporated. The GVS software can execute on a standard Windows or Linux-based PC with a minimum of 2 GB RAM, and the model output is easy and inexpensive to distribute, by download or via USB/DVD/CD. Example models are described here for three groundwater systems in Queensland, northeastern Australia: two unconfined alluvial groundwater systems with intensive irrigation, the Lockyer Valley and the upper Condamine Valley, and the Surat Basin, a large sedimentary basin of confined artesian aquifers. This latter example required more detail in the hydrostratigraphy, correlation of formations with drillholes and visualisation of simulation piezometric surfaces. Both alluvial system GVS models were developed during drought conditions to support government strategies to implement groundwater management. The Surat Basin model was industry sponsored research, for coal seam gas groundwater management and community information and consultation. The “virtual” groundwater systems in these 3D GVS models can be interactively interrogated by standard functions, plus production of 2D cross-sections, data selection from the 3D scene, rear end database and plot displays. A unique feature is that GVS allows investigation of time-series data across different display modes, both 2D and 3D. GVS has been used successfully as a tool to enhance community/stakeholder understanding and knowledge of groundwater systems and is of value for training and educational purposes. Projects completed confirm that GVS provides a powerful support to management and decision making, and as a tool for interpretation of groundwater system hydrological processes. A highly effective visualisation output is the production of short videos (e.g. 2–5 min) based on sequences of camera ‘fly-throughs’ and screen images. Further work involves developing support for multi-screen displays and touch-screen technologies, distributed rendering, gestural interaction systems. To highlight the visualisation and animation capability of the GVS software, links to related multimedia hosted online sites are included in the references.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pricing greenhouse gas emissions is a burgeoning and possibly lucrative financial means for climate change mitigation. Emissions pricing is being used to fund emissions-abatement technologies and to modify land management to improve carbon sequestration and retention. Here we discuss the principal land-management options under existing and realistic future emissions-price legislation in Australia, and examine them with respect to their anticipated direct and indirect effects on biodiversity. The main ways in which emissions price-driven changes to land management can affect biodiversity are through policies and practices for (1) environmental plantings for carbon sequestration, (2) native regrowth, (3) fire management, (4) forestry, (5) agricultural practices (including cropping and grazing), and (6) feral animal control. While most land-management options available to reduce net greenhouse gas emissions offer clear advantages to increase the viability of native biodiversity, we describe several caveats regarding potentially negative outcomes, and outline components that need to be considered if biodiversity is also to benefit from the new carbon economy. Carbon plantings will only have real biodiversity value if they comprise appropriate native tree species and provide suitable habitats and resources for valued fauna. Such plantings also risk severely altering local hydrology and reducing water availability. Management of regrowth post-agricultural abandonment requires setting appropriate baselines and allowing for thinning in certain circumstances, and improvements to forestry rotation lengths would likely increase carbon-retention capacity and biodiversity value. Prescribed burning to reduce the frequency of high-intensity wildfires in northern Australia is being used as a tool to increase carbon retention. Fire management in southern Australia is not readily amenable for maximising carbon storage potential, but will become increasingly important for biodiversity conservation as the climate warms. Carbon price-based modifications to agriculture that would benefit biodiversity include reductions in tillage frequency and livestock densities, reductions in fertiliser use, and retention and regeneration of native shrubs; however, anticipated shifts to exotic perennial grass species such as buffel grass and kikuyu could have net negative implications for native biodiversity. Finally, it is unlikely that major reductions in greenhouse gas emissions arising from feral animal control are possible, even though reduced densities of feral herbivores will benefit Australian biodiversity greatly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is widely recognised that defining trade-offs between greenhouse gas emissions using ‘emission equivalence’ based on global warming potentials (GWPs) referenced to carbon dioxide produces anomalous results when applied to methane. The short atmospheric lifetime of methane, compared to the timescales of CO2 uptake, leads to the greenhouse warming depending strongly on the temporal pattern of emission substitution. We argue that a more appropriate way to consider the relationship between the warming effects of methane and carbon dioxide is to define a ‘mixed metric’ that compares ongoing methane emissions (or reductions) to one-off emissions (or reductions) of carbon dioxide. Quantifying this approach, we propose that a one-off sequestration of 1 t of carbon would offset an ongoing methane emission in the range 0.90–1.05 kg CH4 per year. We present an example of how our approach would apply to rangeland cattle production, and consider the broader context of mitigation of climate change, noting the reverse trade-off would raise significant challenges in managing the risk of non-compliance. Our analysis is consistent with other approaches to addressing the criticisms of GWP-based emission equivalence, but provides a simpler and more robust approach while still achieving close equivalence of climate mitigation outcomes ranging over decadal to multi-century timescales.