958 resultados para Genetic Regulatory Networks
Resumo:
The switch from within-hive activities to foraging behavior is a major transition in the life cycle of a honeybee (Apis mellifera) worker. A prominent regulatory role in this switch has long been attributed to juvenile hormone (JH), but recent evidence also points to the yolk precursor protein vitellogenin as a major player in behavioral development. In the present study, we injected vitellogenin double-stranded RNA (dsVg) into newly emerged worker bees of Africanized genetic origin and introduced them together with controls into observation hives to record flight behavior. RNA interference-mediated silencing of vitellogenin gene function shifted the onset of long-duration flights (> 10 min) to earlier in life (by 3-4 days) when compared with sham and untreated control bees. In fact, dsVg bees were observed conducting such flights extremely precociously, when only 3 days old. Short-duration flights (< 10 min), which bees usually perform for orientation and cleaning, were not affected. Additionally, we found that the JH titer in dsVg bees collected after 7 days was not significantly different from the controls. The finding that depletion of the vitellogenin titer can drive young bees to become extremely precocious foragers could imply that vitellogenin is the primary switch signal. At this young age, downregulation of vitellogenin gene activity apparently had little effect on the JH titer. As this unexpected finding stands in contrast with previous results on the vitellogenin/JH interaction at a later age, when bees normally become foragers, we propose a three-step sequence in the constellation of physiological parameters underlying behavioral development.
Resumo:
This article reviews the literature to provide the current state of the genetic critic in Brazil. It lists the currently available books and periodicals, annals of congresses or symposia published by members of the Association of Researchers in Genetic Critic (APCG), showing the tendencies that guide the research in the endless universe of human creation. It also highlights the object of study of the genetic critic, which is not necessarily the one that precedes the word but the processes of creation. Finally, it shows the essential role of genetic critic even in the computer era, since the hard disk maintains all the changes made in the text by obliterations and substitutions if the adequate software is installed.
Resumo:
IL-1 is a key proinflammatory driver of several autoimmune diseases including juvenile inflammatory arthritis, diseases with mutations in the NALP/cryopyrin complex and Crohn’s disease, and is genetically or clinically associated with many others. IL-1 is a pleiotropic proinflammatory cytokine; however the mechanisms by which increased IL-1 signaling promotes autoreactive T cell activity are not clear. Here we show that autoimmune-prone NOD and IL-1 receptor antagonist-deficient C57BL/6 mice both produce high levels of IL-1, which drives autoreactive effector cell expansion. IL-1beta drives proliferation and cytokine production by CD4+CD25+FoxP3– effector/memory T cells, attenuates CD4+CD25+FoxP3+ regulatory T cell function, and allows escape of CD4+CD25– autoreactive effectors from suppression. Thus, inflammation or constitutive overexpression of IL-1beta in a genetically predisposed host can promote autoreactive effector T cell expansion and function, which attenuates the ability of regulatory T cells to maintain tolerance to self.
Expression of the iron regulatory peptide hepcidin is reduced in patients with chronic liver disease
Resumo:
Disturbances in iron metabolism often accompany liver disease in humans and hepatic iron deposition is a frequent finding. Since the peptide hepcidin, a major regulator of body iron homeostasis, is synthesised in the liver, alterations in hepcidin expression could be responsible for these effects. To investigate this possibility, we studied hepcidin expression in liver biopsies from patients with hepatitis C virus (HCV) infection, non-alcoholic fatty liver disease (NAFLD) and hemochromatosis (HC). Total RNA was extracted from the liver tissue of 24 HCV, 17 NASH and 5 HC patients, and 17 liver transplant donors (controls). The levels of mRNA for hepcidin and several other molecules involved in iron metabolism (DMT1, Dcytb, hephaestin, ferroportin, TfR1, TfR2, HFE and HJV) were examined by ribonuclease protection assay and expressed relative to the housekeeping gene GAPDH. The expression of hepcidin was significantly decreased in HCV and NASH patients relative to control liver (109±16 and 200±44 versus 325±26 respectively; P=0.008 and 0.02). We have previously reported similar findings in patients with HC, and this was confirmed in the current analysis (176±21; P=0.003). In both HCV and NAFLD patients the expression of the iron reductase Dcytb and the transferrin binding regulatory molecule TfR2 was also decreased, while the cellular iron exporter ferroportin showed a significant increase. Levels of the mRNA for the iron oxidase hephaestin were lower in HCV patients alone, while expression of the major transferrin binding molecule TfR1 was decreased only in NAFLD patients. Of particular interest was the finding that the expression of HJV (which is mutated in patients with juvenile HC) was significantly increased in NAFLD patients. No changes were seen in the expression of the iron importer DMT1 or the regulatory molecule HFE. Decreased expression of hepcidin in patients with HCV and NAFLD provides an explanation why iron homeostasis could be perturbed in these disorders. Reduced hepcidin levels would increase intestinal iron absorption and iron release from macrophages, which could contribute to hepatic iron accumulation. This in turn could lead to alterations in the expression of various proteins involved in iron transport and its regulation. Indeed most of the changes in the expression of such molecules observed in this study are consistent with this. However, the mechanisms leading to changes in the expression of hepcidin in these diseases remain to be elucidated.
Resumo:
Diverse infectious and inflammatory environmental triggers, through unknown mechanisms, initiate autoimmune disease in genetically predisposed individuals. Here we show that IL-1b, a key cytokine mediator of the inflammatory response, suppresses CD25+CD4+ regulatory T cell function. Surprisingly, suppression by IL-1b occurs only where antigen is presented simultaneously to CD25+CD4+ T cells and to CD25CD4+ antigen-specific effector T cells. Further, NOD mice show an intrinsic over-production of IL-1 that contributes to reduced CD25+CD4+ regulatory T cell function. Thus, inflammation or constitutive over-expression of IL-1b in a genetically predisposed host can initiate a positive feedback loop licensing autoantigen-specific effector cells to inhibit the regulatory T cells maintaining tolerance to self.
Resumo:
Background: Condition-dependence is a ubiquitous feature of animal life histories and has important implications for both natural and sexual selection. Mate choice, for instance, is typically based on condition-dependent signals. Theory predicts that one reason why condition-dependent signals may be special is that they allow females to scan for genes that confer high parasite resistance. Such explanations require a genetic link between immunocompetence and body condition, but existing evidence is limited to phenotypic associations. It remains unknown, therefore, whether females selecting males with good body condition simply obtain a healthy mate, or if they acquire genes for their offspring that confer high immunocompetence. Results: Here we use a cross-foster experimental design to partition the phenotypic covariance in indices of body condition and immunocompetence into genetic, maternal and environmental effects in a passerine bird, the zebra finch Taeniopygia guttata. We show that there is significant positive additive genetic covariance between an index of body condition and an index of cell-mediated immune response. In this case, genetic variance in the index of immune response explained 56% of the additive genetic variance in the index of body condition. Conclusion: Our results suggest that, in the context of sexual selection, females that assess males on the basis of condition-dependent signals may gain genes that confer high immunocompetence for their offspring. More generally, a genetic correlation between indices of body condition and imuunocompetence supports the hypothesis that parasite resistance may be an important target of natural selection. Additional work is now required to test whether genetic covariance exists among other aspects of both condition and immunocompetence.
Resumo:
The inflammasome is an inducible cytoplasmic structure that is responsible for production and release of biologically active interleukin-1 (IL-1). A polymorphism in the inflammasome component NALP3 has been associated with decreased IL-1 levels and increased occurrence of vaginal Candida infection. We hypothesized that this polymorphism-induced variation would influence susceptibility to infertility. DNA was obtained from 243 women who were undergoing in vitro fertilization (IVF) and tested for a length polymorphism in intron 2 of the gene coding for NALP3 (gene symbol CIAS1). At the conclusion of testing the findings were analyzed in relation to clinical parameters and IVF outcome. The frequency of the 12 unit repeat allele, associated with maximal inflammasome activity, was 62.3% in cases of female infertility vs. 75.6% in cases where only the male partner had a detectable fertility problem (p = 0.0095). Conversely, the frequency of the 7 unit repeat allele was 28.9% in those with a female fertility problem, 17.0% in women with infertile males and 18.4% in idiopathic infertility (p = 0.0124). Among the women who were cervical culture-positive for mycoplasma the frequency of the 7 unit repeat was 53.7% as opposed to 19.5% in those negative for this infection (p < 0.0001). We conclude that the CIAS1 7 unit repeat polymorphism increases the likelihood of mycoplasma infection-associated female infertility. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Hepatocellular carcinoma (HCC) is associated with multiple risk factors and is believed to arise from pre-neoplastic lesions, usually in the background of cirrhosis. However, the genetic and epigenetic events of hepatocarcinogenesis are relatively poorly understood. HCC display gross genomic alterations, including chromosomal instability (CIN), CpG island methylation, DNA rearrangements associated with hepatitis B virus (HBV) DNA integration, DNA hypomethylation and, to a lesser degree, microsatellite instability. Various studies have reported CIN at chromosomal regions, 1p, 4q, 5q, 6q, 8p, 10q, 11p, 16p, 16q, 17p and 22q. Frequent promoter hypermethylation and subsequent loss of protein expression has also been demonstrated in HCC at tumor suppressor gene (TSG), p16, p14, p15, SOCS1, RIZ1, E-cadherin and 14-3-3 sigma. An interesting observation emerging from these studies is the presence of a methylator phenotype in hepatocarcinogenesis, although it does not seem advantageous to have high levels of microsatellite instability. Methylation also appears to be an early event, suggesting that this may precede cirrhosis. However, these genes have been studied in isolation and global studies of methylator phenotype are required to assess the significance of epigenetic silencing in hepatocarcinogenesis. Based on previous data there are obvious fundamental differences in the mechanisms of hepatic carcinogenesis, with at least two distinct mechanisms of malignant transformation in the liver, related to CIN and CpG island methylation. The reason for these differences and the relative importance of these mechanisms are not clear but likely relate to the etiopathogenesis of HCC. Defining these broad mechanisms is a necessary prelude to determine the timing of events in malignant transformation of the liver and to investigate the role of known risk factors for HCC.
Resumo:
Matricellular proteins play a unique role in the skeleton as regulators of bone remodeling, and the matricellular protein osteonectin (SPARC, BM-40) is the most abundant non-collagenous protein in bone In. the absence of osteonectin, mice develop progressive low turnover osteopenia, particularly affecting trabecular bone. Polymorphisms in a regulatory region of the osteonectin gene are associated with bone mass in a subset of idiopathic osteoporosis patients, and these polymorphisms likely regulate osteonectin expression. Thus it is important to determine how osteonectin gene dosage affects skeletal function. Moreover, intermittent administration of parathyroid hormone (PTH) (1-34) is the only anabolic therapy approved for the treatment of osteoporosis, and it is critical to understand how modulators of bone remodeling, such as osteonectin, affect skeletal response to anabolic agents. In this study, 10 week old female wild type, osteonectin-haploinsufficient, and osteonectin-null mice (C57Bl/6 genetic background) were given 80 mu g/kg body weight/day PTH(1-34) for 4 weeks. Osteonectin gene dosage had a profound effect on bone microarchitecture. The connectivity density of trabecular bone in osteonectin-haploinsufficient mice was substantially decreased compared with that of wild type mice, suggesting compromised mechanical properties. Whereas mice of each genotype had a similar osteoblastic response to PTH treatment, the osteoclastic response was accentuated in osteonectin-haploinsufficient and osteonectin-null mice. Eroded surface and osteoclast number were significantly higher in PTH-treated osteonectin-null mice, as was endosteal area. In vitro studies confirmed that PTH induced the formation of more osteoclast-like cells in marrow from osteonectin-null mice compared with wild type. PTH treated osteonectin-null bone marrow cells expressed more RANKL mRNA compared with wild type. However, the ratio of RANKL:OPG mRNA was somewhat lower in PTH treated osteonectin-null cultures. Increased expression of RANKL in response to PTH could contribute to the accentuated osteoclastic response in osteonectin(-/-) mice, but other mechanisms are also likely to be involved. The molecular mechanisms by which PTH elicits bone anabolic vs. bone catabolic effects remain poorly understood. Our results imply that osteonectin levels may play a role in modulating the balance of bone formation and resorption in response to PTH. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
Objective: Individuals with autism spectrum disorders typically have normal visuospatial abilities but impaired executive functioning, particularly in abilities related to working memory and attention. The aim of this study was to elucidate the functioning of frontoparietal networks underlying spatial working memory processes during mental rotation in persons with autism spectrum disorders. Method: Seven adolescent males with normal IQ with an autism spectrum disorder and nine age- and IQ-matched male comparison subjects underwent functional magnetic resonance imaging scans while performing a mental rotation task. Results: The autism spectrum disorders group showed less activation in lateral and medial premotor cortex, dorsolateral prefrontal cortex, anterior cingulate gyrus, and caudate nucleus. Conclusions: The finding of less activation in prefrontal regions but not in parietal regions supports a model of dysfunction of frontostriatal networks in autism spectrum disorders.
Resumo:
Non-syndromic cleft lip with or without cleft palate (NS CL/P) is a complex disease in which heritability estimates vary widely depending on the population studied. To evaluate the importance of genetic contribution to NS CL/P in the Brazilian population, we conducted a study with 1,042 families from five different locations (Santarem, Fortaleza, Barbalha, Maceio, and Rio de Janeiro). We also evaluated the role of consanguinity and ethnic background. The proportion of familial cases varied significantly across locations, with the highest values found in Santarem (44%) and the lowest in Maceio (23%). Heritability estimates showed a higher genetic contribution to NS CL/P in Barbalha (85%), followed by Santarem (71%), Rio de Janeiro (70%), Fortaleza (64%), and Maceio (45%). Ancestry was not correlated with the occurrence of NS CL/P or with the variability in heritability. Only in Rio de Janeiro was the coefficient of inbreeding significantly larger in NS CL/P families than in the local population. Recurrence risk for the total sample was approximately 1.5-1.6%, varying according to the location studied (0.6-0.7% in Maceio to 2.2-2.8% in Barbalha). Our findings show that the degree of genetic contribution to NS CL/P varies according to the geographic region studied, and this difference cannot be attributed to consanguinity or ancestry. These findings suggest that Barbalha is a promising region for genetic studies. The data presented here will be useful in interpreting results from molecular analyses and show that care must be taken when pooling samples from different populations for association studies. (C) 2011 Wiley-Liss, Inc.
Resumo:
Purpose: Animal models of diseases are extremely important in the study of the physiopathogenesis of human diseases and for testing novel therapeutic interventions. The present study aimed to develop an animal model that simulates human allergic conjunctivitis and to study how allergic response may be influenced by the allergen dose used for immunization and by genetic factors. Methods: Sixty C57Bl/6 mice and 60 BALB/c mice were immunized with placebo, or 5 mu g or 500 mu g of allergen derived from Dermatophagoides pteronyssinus. After ocular challenge, the mice were examined in order to clinically verify the occurrence or not of conjunctivitis. Material obtained from animals was used for total and specific IgE and IgG1 dosage, for assays of Der p-specific lymphocyte proliferation and supernatant cytokine dosage, and for histopathological evaluation of conjunctiva. Results: We developed a murine model of allergic conjunctivitis induced by D. pteronyssinus. The model is similar to human disease both clinically and according to laboratory findings. In mouse, conjunctivitis was associated with a Th2 cytokine profile. However, IL-10 appeared to be involved with disease blockade. Mice of different strains have distinct immune responses, depending on the sensitization dose. Conclusions: The murine model developed is suitable for the study of immunopathogenesis and as a template for future therapies. Using BALB/c and C57BL/6 mice, we demonstrated that genetic factors play a role in determining susceptibility and resistance, as well as in establishing the allergen concentration needed to induce or to block disease development.
Resumo:
Mucosal leishmaniasis (ML) follows localized cutaneous leishmaniasis (CL) caused by Leishmania braziliensis. Proinflammatory responses mediate CL self-healing but are exaggerated in ML Proinflammatory monocyte chemoattractant protein 1 (MCP-1; encoded by CCL2) is associated with CL We explore its role in CL/ML through analysis of the regulatory CCL2 -2518 bp promoter polymorphism in CL/ML population samples and families from Brazil. Genotype frequencies were compared among ML/CL cases and control groups using logistic regression and the family-based association test (FBAT). MCP-1 was measured in plasma and macrophages. The GG recessive genotype at CCL2 -2518 bp was more common in patients with ML (N = 67) than in neighborhood control (NC; N = 60) subjects (OR 1.78; 95% Cl 1.01-3.14; P = 0.045), than in NC combined with leishmanin skin-test positive (N = 60) controls (OR 4.40; 95% CI 1.42-13.65; P = 0.010), and than in controls combined with CL (N = 60) patients (OR 2.78; 95% CI 1.13-6.85; P = 0.045). No associations were observed for CL compared to any groups. FBAT (91 ML and 223 CL cases in families) confirmed recessive association of ML with allele G (Z = 2.679; P = 0.007). Higher levels of MCP-1 occurred in plasma (P = 0.03) and macrophages (P < 0.0001) from GG compared to AA individuals. These results suggest that high MCP-1 increases risk of ML (C) 2010 Elsevier B.V. All rights reserved.