973 resultados para Gels drying
Resumo:
Tese de Doutoramento - Leaders for Technical Industries (LTI) - MIT Portugal
Resumo:
Tese de Doutoramento - Civil Engineering
Resumo:
One important component with particular relevance in battery performance is the cathode, being one of the main responsible elements for cell capacity and cycle life. Carbon coated lithium iron phosphate, C-LiFePO4, active material is one of the most promising cathode materials for the next generation of large scale lithium ion battery applications and strong research efforts are being devoted to it, due to its excellent characteristics, including high capacity, ~170 mAh/g, and safety. This review summarizes the main developments on C-LiFePO4 based cathode film preparation and performance. The effect of the binder, conductive additive, relationship between active material-binder-conductive additive and drying step, in the electrode film fabrication and performance is presented and discussed. Finally, after the presentation of the cell types fabricated with C-LiFePO4 active material and their performance, some conclusions and guidelines for further investigations are outlined.
Resumo:
Multiarm star polymers are attractive materials due to their unusual bulk and solution properties. They are considered analogues of dendrimers with a wide range of applications, such as drug delivery, membranes, coatings and lithography.1 The advent of controlled polymerization made possible the existence of this unique class of organic nanoparticles (ONPs).2 Two major synthetic strategies are usually employed in the preparation of star polymers, the core-first and arm-first approaches. The core-first approach involves a controlled living polymerization using a multiarm initiator core while the arm-first methodology is based in the quenching of living polymers with multifunctional coupling agent or bifunctional vinyl compounds. Herein, we present the synthesis and characterization of a new star polymer, the multiarm star poly(2-hydroxyethyl methacrylate). The tetra-armed star polymer was prepared by reversible addition fragmentation chain-transfer (RAFT) polymerization using the core-first approach. The RAFT chain-transfer agent (RAFT CTA) pentaerythritol tetrakis[2-(dodecylthiocarbonothioylthio)-2-methylpropionate] was used as multiarm initiator core were 2-hydroxyethyl methacrylate (HEMA) was polymerized using AIBN as radical initiator. Structural characterization was performed by 1H NMR and FTIR. The new polymer is able to uptake large quantities of organic solvents, forming gels. The rheological behavior of these gels was also investigated.
Resumo:
In the present study, different aerial parts from twelve Amazonian plant species found in the National Institute for Amazon Research's (INPA's) Adolpho Ducke Forest Reserve (in Manaus, Amazonas, Brazil) were collected. Separate portions of dried, ground plant materials were extracted with water (by infusion), methanol and chloroform (by continuous liquid-solid extraction) and solvents were removed first by rotary evaporation, and finally by freeze-drying which yielded a total of seventy-one freeze-dried extracts for evaluation. These extracts were evaluated initially at concentrations of 500 and 100 µg/mL for in vitro hemolytic activity and in vitro inhibition of platelet aggregation in human blood, respectively. Sixteen extracts (23 % of all extracts tested, 42 % of all plant species), representing the following plants: Chaunochiton kappleri (Olacaceae), Diclinanona calycina (Annonaceae), Paypayrola grandiflora (Violaceae), Pleurisanthes parviflora (Icacinaceae), Sarcaulus brasiliensis (Sapotaceae), exhibited significant inhibitory activity towards human platelet aggregation. A group of extracts with antiplatelet aggregation activity having no in vitro hemolytic activity has therefore been identified. Three extracts (4 %), all derived from Elaeoluma nuda (Sapotaceae), exhibited hemolytic activity. None of the plant species in this study has known use in traditional medicine. So, these data serve as a baseline or minimum of antiplatelet and hemolytic activities (and potential usefulness) of non-medicinal plants from the Amazon forest. Finally, in general, these are the first data on hemolytic and inhibitory activity on platelet aggregation for the genera which these plant species represent.
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Based on sedimentological and geochemical data, this work relates spectrophotometric measurements with sediment composition and its application in palaeoecological studies of Amazon wetlands. The CIELAB values are directly related to mineralogical and chemical composition, mostly involving quartz, iron oxyhydroxides and sulfides (e.g. pyrite), and total organic carbon. Total organic carbon contents between 0.4-1%, 1-2%, 3-5% and 15-40% were related to L* (lightness) data of 27, 26-15, 7-10 and 7 or less, respectively. The CIELAB values of a deposit in Marabá, Pará, were proportional to variations in quartz and total organic carbon contents, but changes in zones of similar color, mainly in the +a* (red) and +b* (yellow) values of deposits in Calçoene, Amapá and Soure, Pará, indicate a close relationship between total organic carbon content and iron oxyhydroxides and sulfides. Furthermore, the Q7/4 diagram (ratio between the % re?ectance value at 700 nm to that at 400 nm, coupled with L*) indicated iron-rich sediments in the bioturbated mud facies of the Amapá deposit, bioturbated mud and bioturbated sand facies of Soure deposit, and cross-laminated sand and massive sand facies of the Marabá core. Also, organic-rich sediments were found in the bioturbated mud facies of the Amapá deposit, lenticular heterolithic and bioturbated mud facies of the Soure deposit, and laminated mud and peat facies of the Marabá deposit. At the Marabá site, the data suggest an autochthonous influence with peat formation. The coastal wetland sites at Marajó and Amapá represent the development of a typical tidal flat setting with sulfide and iron oxyhydroxides formation during alternated flooding and drying.
Resumo:
Long pepper (Piper hispidinervum) is an Amazonian species of commercial interest due to the production of safrole. Drying long pepper biomass to extract safrole is a time consuming and costly process that can also result in the contamination of the material by microorganisms. The objective of this study was to analyze the yield of essential oil and safrole content of fresh and dried biomass of long pepper accessions maintained in the Active Germoplasm Bank of Embrapa Acre, in the state of Acre, Brazil, aiming at selecting genotypes with best performance on fresh biomass to recommend to the breeding program of the species. Yield of essential oil and safrole content were assessed in 15 long pepper accessions. The essential oil extraction was performed by hydrodistillation and analyzed by gas chromatography. A joint analysis of experiments was performed and the means of essential oil yield and safrole content for each biomass were compared by Student's t-test. There was variability in the essential oil yield and safrole content. There was no difference between the types of biomass for oil yield; however to the safrole content there was difference. Populations 9, 10, 12 and 15 had values of oil yield between 4.1 and 5.3%, and safrole content between 87.2 and 94.3%. The drying process does not interfere in oil productivity. These populations have potential for selection to the long pepper breeding program using oil extraction in the fresh biomass
Resumo:
Nanocomposite materials with an organic-inorganic urea-silicate (di-ureasil) based matrix containing gold nanoparticles (NPs) were synthesized and characterized by optical (UV/Vis) spectroscopy and indentation measurement. The urea silicate gels were obtained by reaction between silicon alkoxyde modified by isocyanate group and polyethylene glycol oligomer with amine terminal groups in presence of catalyst. The latter ensures the successful incorporation of citrate-stabilized gold NPs in the matrix. It is shown that using a convenient destabilizing agent (AgNO3) and governing the preparative conditions, the aggregation degree of gold NPs can be controlled. The developed synthesis procedure significantly simplifies the preparative procedure of gold/urea silicate nanocomposites, compared to the procedure using gold NPs, preliminary covered with silica shells. Mechanical properties of the prepared sample were characterised using depth sensing indentation methods (DSI) and an idea about the type of aggregation structures was suggested.
Resumo:
We investigate the strain hardening behavior of various gelatin networks-namely physical gelatin gel, chemically cross-linked gelatin gel, and a hybrid gel made of a combination of the former two-under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillations shear protocols. Further, the internal structures of physical gelatin gels and chemically cross-linked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically cross-linked network whereas, in the physical gelatin gels, a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as the correlation length (ξ), the cross-sectional polymer chain radius (Rc) and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physical and chemically cross-linked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized nonlinear elastic theory that has been used to fit the stress-strain curves. The chemical cross-linking that generates coils and aggregates hinders the free stretching of the triple helix bundles in the physical gels.
Resumo:
Tese de Doutoramento em Ciências (área de especialização em Química)
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Due to the limited self-repair capacity of cartilage, regenerative medicine therapies for the treatment of cartilage defects must use a significant amount of cells, preferably applied using a hydrogel system that can promise their delivery and functionality at the specific site. This paper discusses the potential use of k-carrageenan hydrogels for the delivery of stem cells obt ained from adipose tissue in the treatment of cartilage tissue defects. The developed hydrogels were produced by an ionotropic gelation met hod and human adipose stem cells (hASCs) were encapsulated in 1.5% w/v k-carrageenan solution at a cell density of 5 10 6 cells/ml. The results from the analysis of the cell-encapsulating hydrogels, cultured for up to 21 days, indicated that k-carrageenan hydrogels support the viability, proliferation and chondrogenic differentiation of hASCs. Additionally, the mec hanical analysis demonstrated an increase in stiffness and viscoelastic properties of k-carrageenan gels with their encapsulated cells with increasing time in culture with chondrogenic medium. These results allowed the conclusion that k-carrageenan exhibits properties t hat enable the in vitro functionality of encapsulated hASCs and thus may provide the basis for new successful approaches for the treatment of cartilage defects.
Resumo:
Characterization, with emphasis on the rheological properties, of Cassia grandis seeds galactomannan gel containing immobilized Cramoll 1,4 is presented. The gels, with and without immobilized Cramoll 1,4, were evaluated along time by rheometry, pH, color, microbial contamination and lectin hemagglutinating activity (HA). Rheological determinations confirmed the gels to be very stable up to 30 days with variations occurring after this period. Rheological data also showed that the gel/Cramoll 1,4 immobilizing matrix loses its elastic modulus substantially after 60 days. Both gels presented no microbial contamination as well as a pH close to neutral. Colorimetric parameters demonstrated the gels transparency with occasional yellowness. The opacity of the galactomannan gel did not change significantly along the study; the same did not occur for the gel with immobilized Cramoll 1,4 as a statistically significant reduction of its opacity was observed. In what concerns immobilized Cramoll 1,4HA, up to 90% of its initial HA was maintained after 20 days, with a decrease to 60% after 60 days. These results combined with the thickening and stabilizing characteristics of the galactomannan gel make this gel a promising immobilizing matrix for Cramoll 1,4 that can be further exploited for clinical and cosmetic applications.
Resumo:
In Portugal, maize is the cereal that involves more agriculture explorations. Aspergillus spp., among other species, are usually associated with this cereal, during drying and storage, making this commodity susceptible to mycotoxins (such as aflatoxins, ochratoxins, and cyclopiazonic acid). The aim of this study was to evaluate the mycotoxigenic potential of isolated Aspergillus strains from these maize samples and correlate it with the sampling place, the weather conditions, and local practices during drying and storage. The samples were collected between November 2008 and April 2009 in maize association of producers facilities in Coimbra, Santarém and Portalegre. The isolated strains were divided in three distinct groups, Aspergillus section Flavi, Aspergillus section Nigri and others Aspergillus. The preliminary results show that there are differences between the incidence of these groups in the three sampling places, especially in Coimbra, probably due to a lower mean temperatures and higher humidity levels. These data will be presented and discussed.