970 resultados para Gas manufacture and works


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper outlines EU policy on bioenergy, including biofuels, in the context of its policy initiatives to promote renewable energy to combat greenhouse gas emissions and climate change. The EU's Member States are responsible for implementing EU policy: thus, the UK's Renewables Obligation on electricity suppliers and its Renewable Transport Fuel Obligation and road-fuel tax rebates are examined. It is unlikely that EU policy is in conflict with the WTO Agreement on Agriculture or that on Subsidies and Countervailing Measures, but its provisions on environmental sustainability criteria could be problematic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Browse plants play an important role in providing feed for livestock in semi-arid rangelands of Africa. Chemical composition and in vitro ruminal fermentation of leaves collected from Acacia burkei, Acacia tortilis, Acacia nilotica, Dichrostachys cinerea and Ehretia obtusifolia in communal grazing lands in the lowveld of Swaziland is presented. Leaves were collected from trees located on two soil types (i.e., lithosol and vertisol) in the communal land but it had no effect on the chemical composition of tree leaves. The NDFom and ADFom content were highest in D. cinerea and A. burkei and lowest in E. obtusifolia and A. nilotica. Crude protein (CP) contents ranged between 108 g/kg and 122 g/kg DM. D. cinerea had the highest Ca and Mg content, while A. tortilis had the lowest. There were marked variations in K level amongst browse species, with A. tortilis (9.1 g/kg DM) having the highest value. The P, Zn and Fe did not differ between browse species. Soil type and tree species interaction impacted in vitro fermentation parameters. Extent of fermentation, as measured by 48 h cumulative gas production, and organic matter degradability was highest in E. obtusifolia leaves and lowest in D. cinerea leaves within soil type. Fermentation efficiency, as measured by partitioning factors, was highest in A. nilotica leaves. Leaves of E. obtusifolia could be a valuable supplementary feedstuff for ruminant livestock due to its in vitro fermentation characteristics as well as low fibre and moderate CP levels. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular modelling studies have been carried out on two bis(calix[4]diqu(inone) ionophores, each created from two (calix[4]diquinone)arenes bridged at their bottom rims via alkyl chains (CH2)(n), 1: n = 3, 2; n = 4, in order to understand the reported selectivity of these ligands towards different sized metal ions such as Na+, K+, Rb+, and Cs+ in dmso solution. Conformational. analyses have been carried out which show that in the lowest energy conformations of the two macrocycles, the individual calix[4]diquinones exhibit a combination of partial cone, 1,3-alternate and cone conformations. The interactions of these alkali metals with the macrocycles have been studied in the gas phase and in a periodic box of solvent dmso by molecular mechanics and molecular dynamics calculations. Molecular mechanics calculations have been carried out on the mode of entry of the ions into the macrocycles and suggest that this is likely to occur from the side of the central cavity, rather than through the main axis of the calix[4]diquinones. There are energy barriers of ca. 19 kcal mol(-1) for this entry path in the gas phase, but in solution no energy barrier is found. Molecular dynamics simulations show that in both 1 and 2, though particularly in the latter macrocycle, one or two solvent molecules are bonded to the metal throughout the course of the simulation, often to the exclusion, of one or more of the ether oxygen atoms. By contrast the carbonyl oxygen atoms remain bonded to the metal atoms throughout with bond lengths that remain significantly less than those to the ether oxygen atoms. Free energy perturbation studies have been carried out in dmso and indicate that for 1, the selectivity follows the order Rb+ approximate to K+ > Cs+ >> Na+, which is partially in agreement with the experimental results. The energy differences are small and indeed the ratio between stability constants found for Cs+ and K+ complexes is only 0.60, showing that 1 has only a slight preference for K+. For the larger receptor 2, which is better suited to metal complexation, the binding affinity follows the pattern Cs+ >> Rb+ >> K+ >> Na+, with energy differences of 5.75, 2.61, 2.78 kcal mol(-1) which is perfectly consistent with experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background & aims: This study investigated the influence of four commercial lipid emulsions, Ivelip, ClinOleic, Omegaven and SMOFlipid (R), on lipid body formation, fatty acid composition and eicosanoid production by cultured human peripheral blood polymorphonuclear cells (PMN) and mononuclear cells (PBMC). Methods: PMN and PBMC were exposed to emulsions at concentrations ranging from 0.01 to 0.04%. Lipid body formation was assessed by microscopy, fatty acid composition by gas chromatography and eicosanoids by ELISA. Results: Stimulation of inflammatory cells and exposure to lipid emulsions promoted the formation of lipid bodies, but there did not appear to be differential effects of the emulsions tested. In contrast, there were differential effects of lipid emulsions on eicosanoid formation, particularly with regards to LTB4 production by PMN. Omegaven dramatically increased production of eicosanoids compared with the other emulsions in a dose-dependent manner. This effect was associated with a significantly higher level of lipid peroxides in the supernatants of cells exposed to Omegaven. Conclusions: Stimulation of inflammatory cells and exposure to lipid emulsions promotes lipid body formation and eicosanoid production, although the differential effects of different emulsions appear to be largely due to lipid peroxidation of unsaturated fatty acids in some emulsions in this in vitro system. (C) 2009 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The applications of rheology to the main processes encountered during breadmaking (mixing, sheeting, fermentation and baking) are reviewed. The most commonly used rheological test methods and their relationships to product functionality are reviewed. It is shown that the most commonly used method for rheological testing of doughs, shear oscillation dynamic rheology, is generally used under deformation conditions inappropriate for breadmaking and shows little relationship with end-use performance. The frequency range used in conventional shear oscillation tests is limited to the plateau region, which is insensitive to changes in the HMW glutenin polymers thought to be responsible for variations in baking quality. The appropriate deformation conditions can be accessed either by long-time creep or relaxation measurements, or by large deformation extensional measurements at low strain rates and elevated temperatures. Molecular size and structure of the gluten polymers that make up the major structural components of wheat are related to their rheological properties via modern polymer rheology concepts. Interactions between polymer chain entanglements and branching are seen to be the key mechanisms determining the rheology of HMW polymers. Recent work confirms the observation that the dynamic shear plateau modulus is essentially independent of variations in MW of glutens amongst wheat varieties of varying baking performance and also that it is not the size of the soluble glutenin polymers, but the secondary structural and rheological properties of the insoluble polymer fraction that are mainly responsible for variations in baking performance. Extensional strain hardening has been shown to be a sensitive indicator of entanglements and long-chain branching in HMW polymers, and is well related to baking performance of bread doughs. The Considere failure criterion for instability in extension of polymers defines a region below which bubble walls become unstable, and predicts that when strain hardening falls below a value of around 1, bubble walls are no longer stable and coalesce rapidly, resulting in loss of gas retention and lower volume and texture. Strain hardening in doughs has been shown to reach this value at increasingly higher temperatures for better breadmaking varieties and is directly related to bubble stability and baking performance. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In over forty years of research robots have made very little progress still largely confined to industrial manufacture and cute toys, yet in the same period computing has followed Moores Law where the capacity double roughly every two years. So why is there no Moores Law for robots? Two areas stand out as worthy of research to speedup progress. The first is to get a greater understanding of how human and animal brains control movement, the second to build a new generation of robots that have greater haptic sense, that is a better ability to adapt to the environment as it is encountered. A remarkable property of the cognitive-motor system in humans and animals is that it is slow. Recognising an object may take 250 mS, a reaction time of 150 mS is considered fast. Yet despite this slow system we are well designed to allow contact with the world in a variety of ways. We can anticipate an encounter, use the change of force as a means of communication and ignore sensory cues when they are not relevant. A better understanding of these process has allowed us to build haptic interfaces to mimic the interaction. Emerging from this understanding are new ways to control the contact between robots, the user and the environment. Rehabilitation robotics has all the elements in the subject to not only enable and change the lives of people with disabilities, but also to facilitate revolution change in classic robotics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tracer gas techniques have been the most appropriate experimental method of determining airflows and ventilation rates in houses. However, current trends to reduce greenhouse gas effects have prompted the need for alternative techniques, such as passive sampling. In this research passive sampling techniques have been used to demonstrate the potential to fulfil these requirements by using solutions of volatile organic compounds (VOCs) and solid phase microextraction (SPME) fibres. These passive sampling techniques have been calibrated against tracer gas decay techniques and measurements from a standard orifice plate. Two constant sources of volatile organic compounds were diffused into two sections of a humidity chamber and sampled using SPME fibres. From a total of four SPME fibres (two in each section), reproducible results were obtained. Emission rates and air movement from one section to the other were predicted using developed algorithms. Comparison of the SPME fibre technique with that of the tracer gas technique and measurements from an orifice plate showed similar results with good precision and accuracy. With these fibres, infiltration rates can be measured over grab samples in a time weighted averaged period lasting from 10 minutes up to several days. Key words: passive samplers, solid phase microextraction fibre, tracer gas techniques, airflow, air infiltration, houses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eddy-covariance measurements of carbon dioxide fluxes were taken semi-continuously between October 2006 and May 2008 at 190 m height in central London (UK) to quantify emissions and study their controls. Inner London, with a population of 8.2 million (~5000 inhabitants per km2) is heavily built up with 8% vegetation cover within the central boroughs. CO2 emissions were found to be mainly controlled by fossil fuel combustion (e.g. traffic, commercial and domestic heating). The measurement period allowed investigation of both diurnal patterns and seasonal trends. Diurnal averages of CO2 fluxes were found to be highly correlated to traffic. However changes in heating-related natural gas consumption and, to a lesser extent, photosynthetic activity that controlled the seasonal variability. Despite measurements being taken at ca. 22 times the mean building height, coupling with street level was adequate, especially during daytime. Night-time saw a higher occurrence of stable or neutral stratification, especially in autumn and winter, which resulted in data loss in post-processing. No significant difference was found between the annual estimate of net exchange of CO2 for the expected measurement footprint and the values derived from the National Atmospheric Emissions Inventory (NAEI), with daytime fluxes differing by only 3%. This agreement with NAEI data also supported the use of the simple flux footprint model which was applied to the London site; this also suggests that individual roughness elements did not significantly affect the measurements due to the large ratio of measurement height to mean building height.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polydextrose is a randomly linked complex glucose oligomer that is widely used as a sugar replacer, bulking agent, dietary fiber and prebiotic. Polydextrose is poorly utilized by the host and, during gastrointestinal transit, it is slowly degraded by intestinal microbes, although it is not known which parts of the complex molecule are preferred by the microbes. The microbial degradation of polydextrose was assessed by using a simulated model of colonic fermentation. The degradation products and their glycosidic linkages were measured by combined gas chromatography and mass spectrometry, and compared to those of intact polydextrose. Fermentation resulted in an increase in the relative abundance of non-branched molecules with a concomitant decrease in single-branched glucose molecules and a reduced total number of branching points. A detailed analysis showed a preponderance of 1,6 pyranose linkages. The results of this study demonstrate how intestinal microbes selectively degrade polydextrose, and provide an insight into the preferences of gut microbiota in the presence of different glycosidic linkages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an introduction to the Special Issue on “Climate Change and Coupling of Macronutrient Cycles along the Atmospheric, Terrestrial, Freshwater and Estuarine Continuum”, dedicated to Colin Neal on his retirement. It is not intended to be a review of this vast subject, but an attempt to synthesize some of the major findings from the 22 contributions to the Special Issue in the context of what is already known. The major research challenges involved in understanding coupled macronutrient cycles in these environmental media are highlighted, and the difficulties of making credible predictions of the effects of climate change are discussed. Of particular concern is the possibility of interactions which will enhance greenhouse gas concentrations and provide positive feedback to global warming.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Some bioactive secondary metabolites in forage legumes can cause digestive interactions, so that the rumen fermentation pattern of a mixture of forages can differ from the average values of its components. The objective of this study was to investigate the potential role of condensed tannins (CT) on the synergistic effects between one grass species, cocksfoot, and one CT-containing legume species, sainfoin, on in vitro rumen fermentation characteristics. Cocksfoot and sainfoin in different proportions (in g/kg, 1000:0, 750:250, 500:500, 250:750 and 0:1000) were incubated under anaerobic conditions in culture bottles containing buffered rumen fluid from sheep. Incubations were carried out using artificial saliva with and without polyethylene glycol (PEG), which binds and thus inactivates CT. Rumen fermentation parameters describing the degradation and the fate of the energetic and nitrogenous substrates were measured at 3.5 and 24 h. At the early fermentation stage, when the sainfoin level increased from 0 to 1000 g/kg, the ammonia concentration in the medium quadratically decreased from 3.20 to 0.53 mmol/l in absence of PEG (P<0.01) but not in its presence. This result demonstrates that sainfoin CT decreased the rumen degradation of the proteins in the whole mixture, including the proteins in cocksfoot, rather than just the proteins in sainfoin. Interestingly, the total gas and methane productions were lower in mixtures incubated in absence of PEG than in presence of PEG (P<0.001) while no significant PEG effect was observed on digestibility. At the late fermentation stage, a positive quadratic effect on dry matter digestibility was detected without PEG (P<0.05), indicating a synergistic action of cocksfoot plus sainfoin on plant substrate degradation due to CT. The presence of PEG increased gas production (P<0.001) and NH3-N concentration in the medium (P<0.001). Our results suggest that CT could allow a better utilization of plant substrates in mixtures by the rumen ecosystem by improving the partitioning of degraded substrates toward lower gas losses, and decreasing the protein degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extratropical upper troposphere and lower stratosphere (Ex-UTLS) is a transition region between the stratosphere and the troposphere. The Ex-UTLS includes the tropopause, a strong static stability gradient and dynamic barrier to transport. The barrier is reflected in tracer profiles. This region exhibits complex dynamical, radiative, and chemical characteristics that place stringent spatial and temporal requirements on observing and modeling systems. The Ex-UTLS couples the stratosphere to the troposphere through chemical constituent transport (of, e.g., ozone), by dynamically linking the stratospheric circulation with tropospheric wave patterns, and via radiative processes tied to optically thick clouds and clear-sky gradients of radiatively active gases. A comprehensive picture of the Ex-UTLS is presented that brings together different definitions of the tropopause, focusing on observed dynamical and chemical structure and their coupling. This integral view recognizes that thermal gradients and dynamic barriers are necessarily linked, that these barriers inhibit mixing and give rise to specific trace gas distributions, and that there are radiative feedbacks that help maintain this structure. The impacts of 21st century anthropogenic changes to the atmosphere due to ozone recovery and climate change will be felt in the Ex-UTLS, and recent simulations of these effects are summarized and placed in context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deforestation and forest degradation are estimated to account for between 12% and 20% of annual greenhouse gas emissions and in the 1990s (largely in the developing world) released about 5.8 Gt per year, which was bigger than all forms of transport combined. The idea behind REDD + is that payments for sequestering carbon can tip the economic balance away from loss of forests and in the process yield climate benefits. Recent analysis has suggested that developing country carbon sequestration can effectively compete with other climate investments as part of a cost effective climate policy. This paper focuses on opportunities and complications associated with bringing community-controlled forests into REDD +. About 25% of developing country forests are community controlled and therefore it is difficult to envision a successful REDD + without coming to terms with community controlled forests. It is widely agreed that REDD + offers opportunities to bring value to developing country forests, but there are also concerns driven by worries related to insecure and poorly defined community forest tenure, informed by often long histories of government unwillingness to meaningfully devolve to communities. Further, communities are complicated systems and it is therefore also of concern that REDD + could destabilize existing well-functioning community forestry systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A continuous tropospheric and stratospheric vertically resolved ozone time series, from 1850 to 2099, has been generated to be used as forcing in global climate models that do not include interactive chemistry. A multiple linear regression analysis of SAGE I+II satellite observations and polar ozonesonde measurements is used for the stratospheric zonal mean dataset during the well-observed period from 1979 to 2009. In addition to terms describing the mean annual cycle, the regression includes terms representing equivalent effective stratospheric chlorine (EESC) and the 11-yr solar cycle variability. The EESC regression fit coefficients, together with pre-1979 EESC values, are used to extrapolate the stratospheric ozone time series backward to 1850. While a similar procedure could be used to extrapolate into the future, coupled chemistry climate model (CCM) simulations indicate that future stratospheric ozone abundances are likely to be significantly affected by climate change, and capturing such effects through a regression model approach is not feasible. Therefore, the stratospheric ozone dataset is extended into the future (merged in 2009) with multimodel mean projections from 13 CCMs that performed a simulation until 2099 under the SRES (Special Report on Emission Scenarios) A1B greenhouse gas scenario and the A1 adjusted halogen scenario in the second round of the Chemistry-Climate Model Validation (CCMVal-2) Activity. The stratospheric zonal mean ozone time series is merged with a three-dimensional tropospheric data set extracted from simulations of the past by two CCMs (CAM3.5 and GISSPUCCINI)and of the future by one CCM (CAM3.5). The future tropospheric ozone time series continues the historical CAM3.5 simulation until 2099 following the four different Representative Concentration Pathways (RCPs). Generally good agreement is found between the historical segment of the ozone database and satellite observations, although it should be noted that total column ozone is overestimated in the southern polar latitudes during spring and tropospheric column ozone is slightly underestimated. Vertical profiles of tropospheric ozone are broadly consistent with ozonesondes and in-situ measurements, with some deviations in regions of biomass burning. The tropospheric ozone radiative forcing (RF) from the 1850s to the 2000s is 0.23Wm−2, lower than previous results. The lower value is mainly due to (i) a smaller increase in biomass burning emissions; (ii) a larger influence of stratospheric ozone depletion on upper tropospheric ozone at high southern latitudes; and possibly (iii) a larger influence of clouds (which act to reduce the net forcing) compared to previous radiative forcing calculations. Over the same period, decreases in stratospheric ozone, mainly at high latitudes, produce a RF of −0.08Wm−2, which is more negative than the central Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) value of −0.05Wm−2, but which is within the stated range of −0.15 to +0.05Wm−2. The more negative value is explained by the fact that the regression model simulates significant ozone depletion prior to 1979, in line with the increase in EESC and as confirmed by CCMs, while the AR4 assumed no change in stratospheric RF prior to 1979. A negative RF of similar magnitude persists into the future, although its location shifts from high latitudes to the tropics. This shift is due to increases in polar stratospheric ozone, but decreases in tropical lower stratospheric ozone, related to a strengthening of the Brewer-Dobson circulation, particularly through the latter half of the 21st century. Differences in trends in tropospheric ozone among the four RCPs are mainly driven by different methane concentrations, resulting in a range of tropospheric ozone RFs between 0.4 and 0.1Wm−2 by 2100. The ozone dataset described here has been released for the Coupled Model Intercomparison Project (CMIP5) model simulations in netCDF Climate and Forecast (CF) Metadata Convention at the PCMDI website (http://cmip-pcmdi.llnl.gov/).