893 resultados para Gallbladder contraction
Resumo:
This paper seeks to elucidate the fundamental differences between the nonconservation of potential temperature and that of Conservative Temperature, in order to better understand the relative merits of each quantity for use as the heat variable in numerical ocean models. The main result is that potential temperature is found to behave similarly to entropy, in the sense that its nonconservation primarily reflects production/destruction by surface heat and freshwater fluxes; in contrast, the nonconservation of Conservative Temperature is found to reflect primarily the overall compressible work of expansion/contraction. This paper then shows how this can be exploited to constrain the nonconservation of potential temperature and entropy from observed surface heat fluxes, and the nonconservation of Conservative Temperature from published estimates of the mechanical energy budgets of ocean numerical models. Finally, the paper shows how to modify the evolution equation for potential temperature so that it is exactly equivalent to using an exactly conservative evolution equation for Conservative Temperature, as was recently recommended by IOC et al. (2010). This result should in principle allow ocean modellers to test the equivalence between the two formulations, and to indirectly investigate to what extent the budget of derived nonconservative quantities such as buoyancy and entropy can be expected to be accurately represented in ocean models.
Resumo:
The detection of physiological signals from the motor system (electromyographic signals) is being utilized in the practice clinic to guide the therapist in a more precise and accurate diagnosis of motor disorders. In this context, the process of decomposition of EMG (electromyographic) signals that includes the identification and classification of MUAP (Motor Unit Action Potential) of a EMG signal, is very important to help the therapist in the evaluation of motor disorders. The EMG decomposition is a complex task due to EMG features depend on the electrode type (needle or surface), its placement related to the muscle, the contraction level and the health of the Neuromuscular System. To date, the majority of researches on EMG decomposition utilize EMG signals acquired by needle electrodes, due to their advantages in processing this type of signal. However, relatively few researches have been conducted using surface EMG signals. Thus, this article aims to contribute to the clinical practice by presenting a technique that permit the decomposition of surface EMG signal via the use of Hidden Markov Models. This process is supported by the use of differential evolution and spectral clustering techniques. The developed system presented coherent results in: (1) identification of the number of Motor Units actives in the EMG signal; (2) presentation of the morphological patterns of MUAPs in the EMG signal; (3) identification of the firing sequence of the Motor Units. The model proposed in this work is an advance in the research area of decomposition of surface EMG signals.
Resumo:
Purpose – Despite recent threats of economic contraction, China still offers attractive opportunities for foreign companies seeking to expand their business activities through joint venturing (JV) partnering entry strategies. Recent research has indicated a growing recognition of the importance of relational factors in JV partnering. The purpose of this paper is to build on recent research findings that identify critical relation success factors in JVs and explores these in the context of a Hong Kong-based civil aviation services company seeking to expand business activities in Greater China. Design/methodology/approach – While the extant management literature focuses primarily on factors relevant to the inter-partner relationship between partners in the formation stage of a joint venture, this research takes a dynamic stakeholder perspective in respect of the relevant relational factors over the evolution of a partnership. The research described in this paper is based on a case-based study that identifies and examines the relevance and importance of uniquely Chinese factors such as guanxi, renqing and mianzi in the specific context of a strategic partnering relationship. Findings – This phenomenological study provides empirical evidence of critical linkages of these to intrinsically Chinese notions of guanxi, mianzi and renqing – it links these to key strategic partnering success factors identified to be trust, conflict resolution, commitment and cooperation. This study thereby reinforces the importance of the uniquely Chinese relational context in cross-border JVs. Moreover, the research findings suggest that these factors underpin the dynamic bi-directional stakeholder relationship in a Sino-foreign strategic partnership. Originality/value – This study conceptually links the uniquely Chinese relational factors (guanxi, mianzi and renqing) to key success factors supporting the establishment of a strategic partnership in a Sino-foreign context; moreover, it contributes empirical evidence substantiating the proposed conceptual linkage.
Resumo:
This contribution is concerned with aposteriori error analysis of discontinuous Galerkin (dG) schemes approximating hyperbolic conservation laws. In the scalar case the aposteriori analysis is based on the L1 contraction property and the doubling of variables technique. In the system case the appropriate stability framework is in L2, based on relative entropies. It is only applicable if one of the solutions, which are compared to each other, is Lipschitz. For dG schemes approximating hyperbolic conservation laws neither the entropy solution nor the numerical solution need to be Lipschitz. We explain how this obstacle can be overcome using a reconstruction approach which leads to an aposteriori error estimate.
Resumo:
Tremor arises from an involuntary, rhythmic muscle contraction/relaxation cycle and is a common disabling symptom of many motor-related diseases such as Parkinson disease, multiple sclerosis, Huntington disease, and forms of ataxia. In the wake of anecdotal, largely uncontrolled, observations claiming the amelioration of some symptoms among cannabis smokers, and the high density of cannabinoid receptors in the areas responsible for motor function, including basal ganglia and cerebellum, many researchers have pursued the question of whether cannabinoid-based compounds could be used therapeutically to alleviate tremor associated with central nervous system diseases. In this review, we focus on possible effects of cannabinoid-based medicines, in particular on Parkinsonian and multiple sclerosis-related tremors and the common probable molecular mechanisms. While, at present, inconclusive results have been obtained, future investigations should extend preclinical studies with different cannabinoids to controlled clinical trials to determine potential benefits in tremor.
Resumo:
Tracking the formation and full evolution of polar cap ionization patches in the polar ionosphere, we directly observe the full Dungey convection cycle for southward interplanetary magnetic field (IMF) conditions. This enables us to study how the Dungey cycle influences the patches’ evolution. The patches were initially segmented from the dayside storm enhanced density plume at the equatorward edge of the cusp, by the expansion and contraction of the polar cap boundary due to pulsed dayside magnetopause reconnection, as indicated by in situ Time History of Events and Macroscale Interactions during Substorms(THEMIS) observations. Convection led to the patches entering the polar cap and being transported antisunward, while being continuously monitored by the globally distributed arrays of GPS receivers and Super Dual Auroral Radar Network radars. Changes in convection over time resulted in the patches following a range of trajectories, each of which differed somewhat from the classical twin-cell convection streamlines. Pulsed nightside reconnection, occurring as part of the magnetospheric substorm cycle, modulated the exit of the patches from the polar cap, as confirmed by coordinated observations of the magnetometer at Tromsø and European Incoherent Scatter Tromsø UHF radar. After exiting the polar cap, the patches broke up into a number of plasma blobs and returned sunward in the auroral return flow of the dawn and/or dusk convection cell. The full circulation time was about 3 h.
Resumo:
The spatial pattern of precipitation variability in tropical and subtropical Africa over the late Quaternary has long been debated. Prevailing hypotheses variously infer (1) insolation-controlled asymmetry of wet phases between hemispheres, (2) symmetric contraction and expansion of the tropical rainbelt, and (3) independent control on moisture available in Southern Africa via sea surface temperatures in the Indian Ocean. In this study we use climate-model simulations covering the last glacial cycle (120 kyr) with HadCM3 and the multi-model ensembles from PMIP3 (the Palaeoclimate Model Intercomparison Project) to investigate the long-term behaviour of the African rainbelt, and test these simulations against existing empirical palaeohydrological records. Through regional model-data comparisons we find evidence for the validity of several hypotheses, with various proposed processes occurring concurrently but with different regional emphasis (e.g. asymmetric shifts at the seasonal extremes and symmetric expansions/ contractions towards West equatorial regions). Crucially, variations in rainfall are associated with multiple forcing mechanisms that vary in their dominance both spatially and temporally over the glacial cycle; an important consideration when interpreting and extrapolating from often relatively short palaeoenvironmental records.
Resumo:
How tropical cyclone (TC) activity in the northwestern Pacific might change in a future climate is assessed using multidecadal Atmospheric Model Intercomparison Project (AMIP)-style and time-slice simulations with the ECMWF Integrated Forecast System (IFS) at 16-km and 125-km global resolution. Both models reproduce many aspects of the present-day TC climatology and variability well, although the 16-km IFS is far more skillful in simulating the full intensity distribution and genesis locations, including their changes in response to El Niño–Southern Oscillation. Both IFS models project a small change in TC frequency at the end of the twenty-first century related to distinct shifts in genesis locations. In the 16-km IFS, this shift is southward and is likely driven by the southeastward penetration of the monsoon trough/subtropical high circulation system and the southward shift in activity of the synoptic-scale tropical disturbances in response to the strengthening of deep convective activity over the central equatorial Pacific in a future climate. The 16-km IFS also projects about a 50% increase in the power dissipation index, mainly due to significant increases in the frequency of the more intense storms, which is comparable to the natural variability in the model. Based on composite analysis of large samples of supertyphoons, both the development rate and the peak intensities of these storms increase in a future climate, which is consistent with their tendency to develop more to the south, within an environment that is thermodynamically more favorable for faster development and higher intensities. Coherent changes in the vertical structure of supertyphoon composites show system-scale amplification of the primary and secondary circulations with signs of contraction, a deeper warm core, and an upward shift in the outflow layer and the frequency of the most intense updrafts. Considering the large differences in the projections of TC intensity change between the 16-km and 125-km IFS, this study further emphasizes the need for high-resolution modeling in assessing potential changes in TC activity.
Resumo:
This article argues that two movements in constant interplay operate within the historical trajectory of the Spanish language: the localization that becomes globalized and the globalization that becomes localized. Equally, this article illustrates how, at the same time that Spanish is expanding in the world, new idiosyncratic and localized forms of the language are emerging. This article deals with the issues of standardization and language ideology, language contact, and redefinition of identities. The article focuses on three geographic loci: Spain, where Spanish opposes Catalan, Basque, and Galician; the United States, where migrants' Spanish dialects converge and confront English and each other; and finally, Latin America, where Spanish is in contact with Portuguese, indigenous, and Afro-Hispanic languages. The concepts that structure the discussion explain both language expansion and contraction as well as the conflict and constant negotiation between a language's standardized forms and its regional and social varieties.
Resumo:
To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid- and high-latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1–17°S and 64–78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high-elevation oligotrophic lakes, will likely see range contraction under future anthropogenic-induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio-indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes.
Resumo:
Facioscapulohumeral muscular dystrophy (FSHD) is a progressive muscle disorder that has been associated with a contraction of 3.3-kb repeats on chromosome 4q35. FSHD is characterized by a wide clinical inter- and intrafamilial variability, ranging from wheelchair-bound patients to asymptomatic carriers. Our study is unique in comparing the gene expression profiles from related affected, asymptomatic carrier, and control individuals. Our results suggest that the expression of genes on chromosome 4q is altered in affected and asymptomatic individuals. Remarkably, the changes seen in asymptomatic samples are largely in products of genes encoding several chemokines, whereas the changes seen in affected samples are largely in genes governing the synthesis of GPI-linked proteins and histone acetylation. Besides this, the affected patient and related asymptomatic carrier share the 4qA161 haplotype. Thus, these polymorphisms by themselves do not explain the pathogenicity of the contracted allele. Interestingly, our results also suggest that the miRNAs might mediate the regulatory network in FSHD. Together, our results support the previous evidence that FSHD may be caused by transcriptional dysregulation of multiple genes, in cis and in trans, and suggest some factors potentially important for FSHD pathogenesis. The study of the gene expression profiles from asymptomatic carriers and related affected patients is a unique approach to try to enhance our understanding of the missing link between the contraction in D4Z4 repeats and muscle disease, while minimizing the effects of differences resulting from genetic background.
Resumo:
Endothelial cells produce NO by activation of constitutive nitric oxide synthase (NOS) and transcription of inducible NOS (iNOS). We have previously shown that melatonin, in the nanomolar range, inhibits activation of constitutive NOS, and in the present paper, we evaluated whether it could interfere with the expression of iNOS, which is activated by lipopolysaccharide (LPS), a major component of gram-negative bacteria cell walls. Primary cultures of rat endothelial cells were loaded with fluorescent probe for NO detection. Nuclear factor kappa B (NF-kappa B) translocation in endothelial cells elicited by LPS was measured by electromobility shift assay, and the vasodilation of aortic rings was accessed by recording isometric contraction. Melatonin in a micromolar but not in a nanomolar range inhibits the NO production induced by LPS. This effect is not dependent on the activation of G protein-coupled melatonin receptors. The nuclear NF-kappa B translocation is a process necessary for iNOS transcription, and melatonin also inhibits its translocation. LPS induced vasodilation only in endothelium-intact aortic rings, and melatonin (10 mu m) inhibits the vasodilation. Here, we show that concentrations compatible with nocturnal melatonin surge (nm) did not interfere with the activity of iNOS. Considering that micromolar melatonin concentrations could be locally achieved through production by activated immune competent cells, extra-pineal melatonin could have a protective effect against tissue injury. We propose that melatonin blocked the LPS-induced vasodilation by inhibiting the NF-kappa B pathway. Finally, we propose that the effect of melatonin on vascular reactivity is one of the mechanisms that underlies the protective effect of this indolamine against LPS.
Resumo:
Primary cultures of vascular smooth muscle cells (VSMCs) from rats offer a good model system to examine the molecular basis of mechanism of vascular contraction-relaxation. However, during pathological conditions such as atherosclerosis and hypertension, VSMCs characteristically exhibit phenotypic modulation, change from a quiescent contractile to a proliferative synthetic phenotype, which impairs this mechanism of vascular contraction-relaxation. Taking in account that Myosin light chain (MLC) and ERK1/2 directly participate in the process of vascular contraction, the aim of the current study was to analyze the involvement of MLC and ERK1/2 signaling during the process of VSMCs phenotypic modulation. Primary cultures of VSMCs from rat thoracic aortas were isolated and submitted to different number of passages or to freezing condition. Semi-quantitative RT-PCR was used to evaluate the mRNA levels of VSMCs differentiation markers, and western blot assays were used to determine the MLC and ERK1/2 phosphorylation levels during VSMCs phenotypic modulation. Also, immunocytochemical experiments were performed to evaluate morphological alterations occurred during the phenotypic modulation. Elevated number of passages (up to 4) as well as the freezing/thawing process induced a significant phenotypic modulation in VSMCs, which was accompanied by diminished MLC and ERK1/2 phosphorylation levels. Phosphorylation of MLC was suppressed completely by the treatment with a synthetic inhibitor of MEK-1, a direct upstream of ERK1/2, PD98059. These findings provide that ERK1/2-promoted MLC phosphorylation is impaired during VSMCs phenotypic modulation, suggesting that ERK1/2 signaling pathway may represent a potential target for understanding the pathogenesis of several vascular disease processes frequently associated to this condition.
Resumo:
The present study describes the enzymatic properties and molecular identification of 5`-nucleotidase in soluble and microsomal fractions from rat cardiac ventricles. Using AMP as a substrate, the results showed that the cation and the concentration required for maximal activity in the two fractions was magnesium at a final concentration of 1 mM. The pH optimum for both fractions was 9.5. The apparent K-m (Michaelis constant) values calculated from the Eadie-Hofstee plot were 59.7 +/- 10.4 mu M and 134.8 +/- 32.1 mu M, with V-max values of 6.7 +/- 0.4 and 143.8 +/- 23.8 nmol P-i/min/mg of protein (means +/- S.D., n = 4) from soluble and microsomal fractions respectively. Western blotting analysis of ecto-5`-nucleotidase revealed a 70 kDa protein in both fractions, with the major proportion present in the microsomal fraction. The presence of these enzymes in the heart probably has a physiological function in adenosine signalling. Furthermore, the presence of ecto-5`-nucleotidase in the microsomal fraction could have a role in the modulation of the excitation-contraction-coupling process through involvement of the Ca2+ influx into the sarcoplasmic reticulum. The measurement of maximal enzyme activities in the two fractions highlights the potential capacity of the different pathways of purine metabolism in the heart.
Resumo:
Objective Hypertensive rats are more sensitive to the pressor effects of acute ouabain than normotensive rats. We analyzed the effect of chronic ouabain (similar to 8.0 mu g/day, 5 weeks) treatment on the blood pressure of spontaneously hypertensive rats (SHRs) and Wistar-Kyoto rats and the contribution of vascular mechanisms. Methods Responses to acetylcholine and phenylephrine were analyzed in isolated tail arteries. Protein expression of endothelial nitric oxide synthase and cyclooxygenase-2 (COX-2) were also investigated. Results Ouabain treatment enhanced blood pressure only in SHRs. The pD(2) for acetylcholine was decreased in arteries from SHRs compared with Wistar-Kyoto rats, and ouabain did not change this parameter. However, ouabain was able to increase the pD(2) to phenylephrine in SHRs. Nitric oxide synthase inhibition with N(G)-nitro-L-arginine methyl ester or potassium channel blockade by tetraetylamonium increased the response to phenylephrine in SHRs, with a smaller increase in response observed in ouabain-treated SHRs. In addition, indomethacin (a COX inhibitor) and ridogrel (a thromboxane A(2) synthase inhibitor and prostaglandin H(2)/thromboxane A(2) receptor antagonist) decreased contraction to phenylephrine in tail rings from ouabain-treated SHRs. Protein expression of endothelial nitric oxide synthase was unaltered following ouabain treatment in SHRs, whereas COX-2 expression was increased. Conclusion Chronic ouabain treatment further increases the raised blood pressure of SHRs. This appears to involve a vascular mechanism, related to a reduced vasodilator influence of nitric oxide and endothelium-derived hyperpolarizing factor and increased production of vasoconstrictor prostanoids by COX-2. These data suggest that the increased plasma levels of ouabain could play an important role in the maintenance of hypertension and the impairment of endothelial function. J Hypertens 27:1233-1242 (C) 2009 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.