983 resultados para GLUCOSE-OXIDASE ELECTRODE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel 4-aminobenzoic acid (4-ABA) monolayer film is formed on glassy carbon electrode (GCE) by amino cation radical method. Silicotungstic heteropolyanion (SiW12O404-, denoted as SiW12)-containing multilayer films have been fabricated on the 4-ABA modified GCE surface by alternate deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/+) (denoted as QPVP-Os). Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS) and X-ray reflectivity (XR) have been used to characterise the as-prepared multilayer films. It is proved that the multilayer films are uniform and stable. The average thickness for a bilayer of QPVP-Os/SiW12 in the multilayer film is 30.2 Angstrom. The electrocatalytic activities of the multilayer films have been investigated on the reduction of three substrates of important analytical interests, HNO2, BrO3- and H2O2. Especially, the influence of layer number of the multilayer films on the electrocatalytic reduction of HNO2 has been investigated in detail. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The microregion approximation explicit finite difference method is used to simulate cyclic voltammetry of an electrochemical reversible system in a three-dimensional thin layer cell with minigrid platinum electrode. The simulated CV curve and potential scan-absorbance curve were in very good accordance with the experimental results, which differed from those at a plate electrode. The influences of sweep rate, thickness of the thin layer, and mesh size on the peak current and peak separation were also studied by numerical analysis, which give some instruction for choosing experimental conditions or designing a thin layer cell. The critical ratio (1.33) of the diffusion path inside the mesh hole and across the thin layer was also obtained. If the ratio is greater than 1.33 by means of reducing the thickness of a thin layer, the electrochemical property will be far away from the thin layer property.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrocatalytic reduction of O-2 and H2O2 at the glass carbon electrode modified with microperoxidase-11 immobilized with Nafion film has been studied by means of cyclic voltammetry and rotating disk electrode techniques. The modified electrode shows high catalytic activity toward the reduction of both O-2 and H2O2. The rate constants of Oz and H2O2 reduction at the modified electrode have been measured and compared. It is found that O-2 undergoes a four-electron reduction at the modified electrode and the catalytic activity for the reduction of O-2 is dependent on the pH of the solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrochemiluminescence (ECL) of the Ru(bgy)(3)(2-)/S2O82- system in purely aqueous solution at a carbon paste electrode can be clearly seen with the naked eye for Ru(bpy)(3)(2+) concentrations higher than 1 mmol L-1. The log-log plot of the emmitted light intensity vs. Ru(bpy)(3)(2+) concentration is linear over the region 10(-3)-10(-7) mol L-1 with a correlation coefficient of 0.997. The ECL intensity increases linearly with the S2O82- concentration from 10(-6) mol L-1 up to 0.3 mmol L-1 and drops off sharply at concentrations higher than 1 mmol L-1. In addition, a weak ECL signal was obtained when the potential was biased more negative than -0.6 V even in the absence of S2O82-.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A hydrogen peroxide biosensor was fabricated by coating a sol-gel-peroxidase layer onto a Nafion-methylene green modified electrode. Immobilization of methylene green (MG) was attributed to the electrostatic force between MG(+) and the negatively charged sulfonic acid groups in Nafion polymer, whereas immobilization of horseradish peroxidase was attributed to the encapsulation function of the silica sol-gel network. Cyclic voltammetry and chronoamperometry were employed to demonstrate the feasibility of electron transfer between sol-gel-immobilized peroxidase and a glassy carbon electrode. Performance of the sensor was evaluated with respect to response time, sensitivity as well as operational stability. The enzyme electrode has a sensitivity of 13.5 mu A mM(-1) with a detection limit of 1.0 x 10(-7) M H2O2, and the sensor achieved 95% of the steady-state current within 20 s. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The anodic voltammetric behavior of inosine (I) was investigated by linar-sweep voltammetry, differential-pulse voltammetry and cyclic voltammetry at a glassy carbon electrode. In a medium of 0.1 mol/L N2HPO4, inosine showed a well defined anodic peak. The peak potential was about 1.42 V (vs. Ag/AgCl). A linear relationship held between the peak current and the concentration of inosine in the rang of 5 x 10(-4) similar to 8 x 10(-2) g/L. The peak potential decreased with the decrease of the acidity of the solution. The four anodic peaks of inosine with hypoxanthine, xanthine and uric acid were obtained. Their peak potentials were about at 1.42, 1.07, 0.72 and 0.26 Vt vs. Ag/AgCl). The method has been used for the direct determination of inosine in injections. Recoveries of inosine in urine samples were about 85%. Experimental result proved that the electrode reaction was diffusion-controlled and irreversible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, electrode responses to a large number of electroactive species with different standard potentials at the molybdenum oxide-modified carbon fibre microdisk array (CFMA) electrode were investigated. The results demonstrated that the electrochemical behavior for those redox species with formal potentials more positive than similar to 0.0 V at the molybdenum oxide-modified CFMA electrode were affected by the range and direction of the potential scan, which were different from that at a bare CFMA electrode. If the lower limit of the potential scan was more positive than the reduction potential of the molybdenum oxide film, neither the oxidation nor the reduction peaks of the redox species tested could be observed. This indicates that electron transfer between the molybdenum oxide film on the electrode and the electroactive species in solution is blocked due to the existence of a high resistance between the film and electrolyte in these potential ranges. If the lower limit of the potential scan was more negative than the reduction potential of the molybdenum oxide film (similar to - 0.6 V), the oxidation peaks of these species occurred at the potentials near their formal potentials. In addition, the electrochemical behavior of these redox species at the molybdenum oxide-modified CFMA electrode showed a diffusionless electron transfer process. On the other hand, the redox species with formal potentials more negative than similar to - 0.2 V showed similar reversible voltammetric behaviors at both the molybdenum oxide-modified CFMA electrode and the bare electrode. This can be explained by the structure changes of the film before and after reduction of the film. In addition we also observed that the peak currents of some redox species at the modified electrode were much larger than those at a bare electrode under the same conditions, which has been explained by the interaction between these redox species and the reduction state of the molybdenum oxide film. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method is employed for the simultaneous determination of both the calibration constant of an electrochemical quartz crystal microbalance (EQCM) and the active surface area of a polycrystalline gold electrode. A gold electrode: is immersed into a 1 mM KI/1 M H2SO4 solution and on which forms a neutral monolayer. The adsorbed iodine can then be completely oxidized into IO3-. The active surface area of a gold electrode can be obtained from the net electrolytic charge of the oxidation process, and the calibration constant in the EQCM can be calculated from the corresponding frequency shift. The result shows that this method is simple, convenient and valid. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sol-gel technique was used here to construct heteropolyanion-containing modified electrodes. This involves two steps, i.e. the first forming a functionalized sol-gel thin film on the surface of the glassy carbon electrode and then immersing the electrode into a heteropolyanion solution to incorporate the heteropolyanion into the sol-gel film. Here a Dawson-type heteropolyanion, K6P2W18O62 (P2W18), was used as a representative to illuminate the behavior of the as-prepared composite film. The electrochemical performance of the P2W18-modified electrode was studied with respect to the pH effect and long-term stability. The modified electrode exhibited a high electrocatalytic response for the reduction of BrO3- and NO2-. Steady-state amperometry was applied to characterize the electrode as an amperometric sensor for the determination of NO2-. The sensor had a linear range from 0.02 to 34 mM and a detection limit of 5 x 10(-6) M. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stable film was prepared by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemistry behavior of rutin in the DPPC film was investigated. The modified electrode coated with rutin shows a quasi-reversible reduction-oxidation peak on the cyclic voltammogram in phosphate buffer (pH 7.4). This model of biological membrane was not only used to provide biological environment but also to investigate the oxidation of ascorbic acid by rutin. The DPPC-rutin modified electrode behaves as electrocatalytic oxidation to ascorbic acid. The oxidation peak current of ascorbic acid increases drastically and the peak potential of 4 x 10(-4) mol L-1 ascorbic acid shifts negatively about 100 mV compared with that obtained at a bare glassy carbon electrode. The catalytic current increased linearly with the ascorbic acid concentration in the range of 2 x 10(-4) mol L-1 and 1.4 x 10(-3) mol L-1 at a scan rate of 50 mV s(-1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through layer-by-layer assembly, undecatungstozincates monosubstituted by transition metals Mn, ZnW11 Mn (H2O) O-39(8-) was successfully immobilized on a glassy carbon electrode surface grafted covalently by 4-aminobenzoic acid. The electrochemical behavior of these polyoxometalates was investigated. Cyclic voltammetry proves the uniform growth of the film. They exhibit some special electrochemical properties in the films, different from those in homogeneous aqueous solution. The effect of pH on the redox behavior of ZnW11Mn(H2O)O-39(8-) in the film was discussed in detail. The multilayer film electrodes have an excellent electrocatalytic response to the reduction of H2O2 and BrO3-, and to the oxidation of ascorbic acid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new type of tyrosinase biosensor was developed for the detection of phenolic compounds, based on the immobilization of tyrosinase in a sol-gel-derived composite matrix that is composed of titanium oxide sol and a grafting copolymer of poly(vinyl alcohol) with 4-vinylpyridine. Tyrosinase entrapped in the composite matrix can retain its activity to a large extent owing to the good biocompatibility of the matrix. The parameters of the fabrication process and the variables of the experimental conditions for the enzyme electrode were optimized. The resulting sensor exhibited a fast response (20 s), high sensitivity (145.5 muA mmol(-1) 1) and good storage stability. A detection limit of 0.5 muM catechol was obtained at a signal-to-noise ratio of 3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ferrocene-dimyristoyl phosphatidylcholine (DMPC) film electrode was prepared by casting the solution of ferrocene and DMPC in chloroform onto a glassy carbon electrode surface. Ferrocene retained in the biological membrane gave a couple of irreversible peaks of cyclic voltammogram. The electrode exhibited good electrocatalytic activity for the oxidation of ascorbic acid (H(2)A) in phosphate buffer (pH 6.64) with an anodic peak potential of +340 mV (vs. Ag/AgCl). The anodic current was directly proportional to the square root of the scan rate below 150 mV s(-1). The influence of the pH value was investigated and it was observed that pH 6.64 was the suitable value to the anodic peak potential and current. The thickness of the film and the interference of uric acid were also studied. The electrode can be used to determine H(2)A in the presence of equimolar uric acid. The catalytic peak current increased linearly with the concentration of H(2)A in the range of 1 X 10(-4)-5 X 10(-3) mol L-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A stable lipid cast film was made by casting a lipid in chloroform onto a glassy carbon electrode. We imbedded a new mediator norepinephrine into this lipid cast film, which was considered as a biological membrane model. Through electro catalytic oxidation of ascorbic acid by this system, the anodic overpotential was reduced by about 250 mV compared with that obtained at a bare glassy carbon electrode. The electrochemical behavior of norepinephrine in the cast film was controlled by diffusion. The obtained diffusion coefficient of ascorbic acid was 1.87 x 10(-5) cm 2 s(-1). The catalytic current increased linearly with the concentration of ascorbic acid in the range from 0.5 to 10 mM. Using cyclic voltammetry, we obtained two peaks for ascorbic acid and uric acid in the same solution. The separation between the two peaks is about 147 mV. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1,7-Diaminoheptane (DAH) had been covalently grafted on glassy carbon electrode by amino cation radical formation, which resulted in a stable cationic monolayer under proper pH conditions. Dawson-type tungstodiphosphate anion, P2W18O626- and small molecule, Ru(NH3)(6)(3+) were alternately assembled on the DAH modified electrode through layer-by-layer electrostatic interaction. Thus-prepared multilayer film had been characterized by cyclic voltammetry and X-ray photoelectron spectroscopy. The P2W18O626- multilayers exhibit high electrocatalytic response and sensitivity towards the reduction of iodate. With the increase of the number of P2W18O626- the catalytic current was enhanced and the catalytic potential shifted positively. Iodate in table salt was determined at the modified electrode containing three layers of P2W18O626- with satisfactory results. The multilayer electrode is promising as an electrochemical sensor for the detection of trace iodate.