932 resultados para Full-length Human
Resumo:
Complexes between the quorum-sensing regulator TraR and its inducing ligand autoinducer (AAI) are soluble in Escherichia coli, whereas apo-TraR is almost completely insoluble. Here we show that the lack of soluble TraR is due in large part to rapid proteolysis, inasmuch as apo-TraR accumulated to high levels in an E. coli strain deficient in Clp and Lon proteases. In pulse labeling experiments, AAI protected TraR against proteolysis only when it was added before the radiolabel. This observation indicates that TraR proteins can productively bind AAI only during their own synthesis on polysomes, whereas fully synthesized apo-TraR proteins are not functional AAI receptors. Purified apo-TraR was rapidly degraded by trypsin to oligopeptides, whereas TraR–AAI complexes were more resistant to trypsin and were cleaved at discrete interdomain linkers, indicating that TraR requires AAI to attain its mature tertiary structure. TraR–AAI complexes eluted from a gel filtration column as dimers and bound DNA as dimers. In contrast, apo-TraR was monomeric, and incubation with AAI under a variety of conditions did not cause dimerization. We conclude that AAI is critical for the folding of nascent TraR protein into its mature tertiary structure and that full-length apo-TraR cannot productively bind AAI and is consequently targeted for rapid proteolysis.
Resumo:
Glycolipid glycosyltransferases catalyze the stepwise transfer of monosaccharides from sugar nucleotides to proper glycolipid acceptors. They are Golgi resident proteins that colocalize functionally in the organelle, but their intimate relationships are not known. Here, we show that the sequentially acting UDP-GalNAc:lactosylceramide/GM3/GD3 β-1,4-N-acetyl-galactosaminyltransferase and the UDP-Gal:GA2/GM2/GD2 β-1,3-galactosyltransferase associate physically in the distal Golgi. Immunoprecipitation of the respective epitope-tagged versions expressed in transfected CHO-K1 cells resulted in their mutual coimmunoprecipitation. The immunocomplexes efficiently catalyze the two transfer steps leading to the synthesis of GM1 from exogenous GM3 in the presence of UDP-GalNAc and UDP-Gal. The N-terminal domains (cytosolic tail, transmembrane domain, and few amino acids of the stem region) of both enzymes are involved in the interaction because (i) they reproduce the coimmunoprecipitation behavior of the full-length enzymes, (ii) they compete with the full-length counterpart in both coimmunoprecipitation and GM1 synthesis experiments, and (iii) fused to the cyan and yellow fluorescent proteins, they localize these proteins to the Golgi membranes in an association close enough as to allow fluorescence resonance energy transfer between them. We suggest that these associations may improve the efficiency of glycolipid synthesis by channeling the intermediates from the position of product to the position of acceptor along the transfer steps.
Resumo:
We report here a new directional cDNA library construction method using an in vitro site-specific recombination reaction, based on the integrase–excisionase system of bacteriophage λ. Preliminary experiments revealed that in vitro recombinational cloning (RC) provided important advantages over conventional ligation-assisted cloning: it eliminated restriction digestion for directional cloning, generated low levels of chimeric clones, reduced size bias and, in our hands, gave a higher cloning efficiency than conventional ligation reactions. In a cDNA cloning experiment using an in vitro synthesized long poly(A)+ RNA (7.8 kb), the RC gave a higher full-length cDNA clone content and about 10 times more transformants than conventional ligation-assisted cloning. Furthermore, characterization of rat brain cDNA clones yielded by the RC method showed that the frequency of cDNA clones >2 kb having internal NotI sites was ∼6%, whereas these cDNAs could not be cloned at all or could be isolated only in a truncated form by conventional methods. Taken together, these results indicate that the RC method makes it possible to prepare cDNA libraries better representing the entire population of cDNAs, without sacrificing the simplicity of current conventional ligation-assisted methods.
Resumo:
Cbf1p is a Saccharomyces cerevisiae chromatin protein belonging to the basic region helix–loop–helix leucine zipper (bHLHzip) family of DNA binding proteins. Cbf1p binds to a conserved element in the 5′-flanking region of methionine biosynthetic genes and to centromere DNA element I (CDEI) of S.cerevisiae centromeric DNA. We have determined the apparent equilibrium dissociation constants of Cbf1p binding to all 16 CDEI DNAs in gel retardation assays. Binding constants of full-length Cbf1p vary between 1.7 and 3.8 nM. However, the dissociation constants of a Cbf1p deletion variant that has been shown to be fully sufficient for Cbf1p function in vivo vary in a range between 3.2 and 12 nM. In addition, native polyacrylamide gel electrophoresis revealed distinct changes in the 3D structure of the Cbf1p/CEN complexes. We also show that the previously reported DNA binding stimulation activity of the centromere protein p64 functions on both the Cbf1 full-length protein and a deletion variant containing only the bHLHzip domain of Cbf1p. Our results suggest that centromeric DNA outside the consensus CDEI sequence and interaction of Cbf1p with adjacent centromere proteins contribute to the complex formation between Cbf1p and CEN DNA.
Resumo:
Ets factors play a critical role in oncogenic Ras- and growth factor-mediated regulation of the proximal rat prolactin (rPRL) promoter in pituitary cells. The rPRL promoter contains two key functional Ets binding sites (EBS): a composite EBS/Pit-1 element located at –212 and an EBS that co-localizes with the basal transcription element (BTE, or A-site) located at –96. Oncogenic Ras exclusively signals to the –212 site, which we have named the Ras response element (RRE); whereas the response of multiple growth factors (FGFs, EGF, IGF, insulin and TRH) maps to both EBSs. Although Ets-1 and GA binding protein (GABP) have been implicated in the Ras and insulin responses, respectively, the precise identity of the pituitary Ets factors that specifically bind to the RRE and BTE sites remains unknown. In order to identify the Ets factor(s) present in GH4 and GH3 nuclear extracts (GH4NE and GH3NE) that bind to the EBSs contained in the RRE and BTE, we used EBS-RRE and BTE oligonucleotides in electrophoretic mobility shift assays (EMSAs), antibody supershift assays, western blot analysis of partially purified fractions and UV-crosslinking studies. EMSAs, using either the BTE or EBS-RRE probes, identified a specific protein–DNA complex, designated complex A, which contains an Ets factor as determined by oligonucleotide competition studies. Using western blot analysis of GH3 nuclear proteins that bind to heparin–Sepharose, we have shown that Ets-1 and GABP, which are MAP kinase substrates, co-purify with complex A, and supershift analysis with specific antisera revealed that complex A contains Ets-1, GABPα and GABPβ1. In addition, we show that recombinant full-length Ets-1 binds equivalently to BTE and EBS-RRE probes, while recombinant GABPα/β preferentially binds to the BTE probe. Furthermore, comparing the DNA binding of GH4NE containing both Ets-1 and GABP and HeLa nuclear extracts devoid of Ets-1 but containing GABP, we were able to show that the EBS-RRE preferentially binds Ets-1, while the BTE binds both GABP and Ets-1. Finally, UV-crosslinking experiments with radiolabeled EBS-RRE and BTE oligonucleotides showed that these probes specifically bind to a protein of ∼64 kDa, which is consistent with binding to Ets-1 (54 kDa) and/or the DNA binding subunit of GABP, GABPα (57 kDa). These studies show that endogenous, pituitary-derived GABP and Ets-1 bind to the BTE, whereas Ets-1 preferentially binds to the EBS-RRE. Taken together, these data provide important insights into the mechanisms by which the combination of distinct Ets members and EBSs transduce differential growth factor responses.
Resumo:
The neural cell adhesion molecule (N-CAM) is expressed on the surface of astrocytes, where its homophilic binding leads to the activation of the transcription factor NF-κB. Transfection of astrocytes with a construct encompassing the transmembrane region and the cytoplasmic domain of N-CAM (designated Tm-Cyto, amino acids 685–839 in the full-length molecule) inhibited this activation up to 40%, and inhibited N-CAM-induced translocation of NF-κB to the nucleus. N-CAM also activated NF-κB in astrocytes from N-CAM knockout mice, presumably through binding to a heterophile. This activation, however, was not blocked by Tm-Cyto expression, indicating that the inhibitory effect of the Tm-Cyto construct is specific for cell surface N-CAM. Deletions and point mutations of the cytoplasmic portion of the Tm-Cyto construct indicated that the region between amino acids 780 and 800 were essential for inhibitory activity. This region contains four threonines (788, 793, 794, and 797). Mutation to alanine of T788, T794, or T797, but not T793, abolished inhibitory activity, as did mutation of T788 or T797 to aspartic acid. A Tm-Cyto construct with T794 mutated to aspartic acid retained inhibitory activity but did not itself induce a constitutive NF-κB response. This result suggests that phosphorylation of T794 may be necessary but is not the triggering event. Overall, these findings define a short segment of the N-CAM cytoplasmic domain that is critical for N-CAM-induced activation of NF-κB and may be important in other N-CAM-mediated signaling.
Resumo:
Mutations at position 187 in secreted gelsolin enable aberrant proteolysis at the 172–173 and 243–244 amide bonds, affording the 71-residue amyloidogenic peptide deposited in Familial Amyloidosis of Finnish Type (FAF). Thermodynamic comparisons of two different domain 2 constructs were carried out to study possible effects of the mutations on proteolytic susceptibility. In the construct we consider to be most representative of domain 2 in the context of the full-length protein (134–266), the D187N FAF variant is slightly destabilized relative to wild type (WT) under the conditions of urea denaturation, but exhibits a Tm identical to WT. The D187Y variant is less stable to intermediate urea concentrations and exhibits a Tm that is estimated to be ≈5°C lower than WT (pH 7.4, Ca2+-free). Although the thermodynamic data indicate that the FAF mutations may slightly destabilize domain 2, these changes are probably not sufficient to shift the native to denatured state equilibrium enough to enable the proteolysis leading to FAF. Biophysical data indicate that these two FAF variants may have different native state structures and possibly different pathways of amyloidosis.
Resumo:
X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetics of aggregation, fibril formation, binding of the dye Congo red, and the characteristic cross-β x-ray diffraction pattern. Microcrystals of this peptide also share the principal properties of the fibrillar amyloid, including a highly stable, β-sheet-rich structure and the binding of Congo red. The x-ray powder pattern of the microcrystals, extending to 0.9-Å resolution, yields the unit cell dimensions of the well-ordered structure. These dimensions restrict possible atomic models of this amyloid-like structure and demonstrate that it forms packed, parallel-stranded β-sheets. The unusually high density of the crystals shows that the packed β-sheets are dehydrated, despite the polar character of the side chains. These results suggest that amyloid is a highly intermolecularly bonded, dehydrated array of densely packed β-sheets. This dry β-sheet could form as Sup35 partially unfolds to expose the peptide, permitting it to hydrogen-bond to the same peptide of other Sup35 molecules. The implication is that amyloid-forming units may be short segments of proteins, exposed for interactions by partial unfolding.
Resumo:
The ryanodine receptor (RyR) family of proteins constitutes a unique type of calcium channel that mediates Ca2+ release from endoplasmic reticulum/sarcoplasmic reticulum stores. Ryanodine has been widely used to identify contributions made by the RyR to signaling in both muscle and nonmuscle cells. Ryanodine, through binding to high- and low-affinity sites, has been suggested to block the channel pore based on its ability to induce partial conductance states and irreversible inhibition. We examined the effect of ryanodine on an RyR type 1 (RyR1) point mutant (E4032A) that exhibits a severely compromised phenotype. When expressed in 1B5 (RyR null/dyspedic) myotubes, E4032A is relatively unresponsive to stimulation by cell membrane depolarization or RyR agonists, although the full-length protein is correctly targeted to junctions and interacts with dihydropyridine receptors (DHPRs) inducing their arrangement into tetrads. However, treatment of E4032A-expressing cells with 200–500 μM ryanodine, concentrations that rapidly activate and then inhibit wild-type (wt) RyR1, restores the responsiveness of E4032A-expressing myotubes to depolarization and RyR agonists. Moreover, the restored E4032A channels remain resistant to subsequent exposure to ryanodine. In single-channel studies, E4032A exhibits infrequent (channel-open probability, Po < 0.005) and brief (<250 μs) gating events and insensitivity to Ca2+. Addition of ryanodine restores Ca2+-dependent channel activity exhibiting full, 3/4, 1/2, and 1/4 substates. This evidence suggests that, whereas ryanodine does not occlude the RyR pore, it does bind to sites that allosterically induce substantial conformational changes in the RyR. In the case of E4032A, these changes overcome unfavorable energy barriers introduced by the E4032A mutation to restore channel function.
Resumo:
The Crithidia fasciculata RNH1 gene encodes an RNase H, an enzyme that specifically degrades the RNA strand of RNA–DNA hybrids. The RNH1 gene is contained within an open reading frame (ORF) predicted to encode a protein of 53.7 kDa. Previous work has shown that RNH1 expresses two proteins: a 38 kDa protein and a 45 kDa protein which is enriched in kinetoplast extracts. Epitope tagging of the C-terminus of the RNH1 gene results in localization of the protein to both the kinetoplast and the nucleus. Translation of the ORF beginning at the second in-frame methionine codon predicts a protein of 38 kDa. Insertion of two tandem stop codons between the first ATG codon and the second in-frame ATG codon of the ORF results in expression of only the 38 kDa protein and the protein localizes specifically to the nucleus. Mutation of the second methionine codon to a valine codon prevents expression of the 38 kDa protein and results in exclusive production of the 45 kDa protein and localization of the protein only in the kinetoplast. These results suggest that the kinetoplast enzyme results from processing of the full-length 53.7 kDa protein. The nuclear enzyme appears to result from translation initiation at the second in-frame ATG codon. This is the first example in trypanosomatids of the production of nuclear and mitochondrial isoforms of a protein from a single gene and is the only eukaryotic gene in the RNase HI gene family shown to encode a mitochondrial RNase H.
Resumo:
The intracellular pathogen Trypanosoma cruzi is the etiological agent of Chagas’ disease. We have isolated a full-length cDNA encoding uracil-DNA glycosylase (UDGase), a key enzyme involved in DNA repair, from this organism. The deduced protein sequence is highly conserved at the C-terminus of the molecule and shares key residues involved in binding or catalysis with most of the UDGases described so far, while the N-terminal part is highly variable. The gene is single copy and is located on a chromosome of ∼1.9 Mb. A His-tagged recombinant protein was overexpressed, purified and used to raise polyclonal antibodies. Western blot analysis revealed the existence of a single UDGase species in parasite extracts. Using a specific ethidium bromide fluorescence assay, recombinant T.cruzi UDGase was shown to specifically excise uracil from DNA. The addition of both Leishmania major AP endonuclease and exonuclease III, the major AP endonuclease from Escherichia coli, produces stimulation of UDGase activity. This activation is specific for AP endonuclease and suggests functional communication between the two enzymes.
Resumo:
Transformation of normal cloned rat embryo fibroblast (CREF) cells with cellular oncogenes results in acquisition of anchorage-independent growth and oncogenic potential in nude mice. These cellular changes correlate with an induction in the expression of a cancer progression-promoting gene, progression elevated gene-3 (PEG-3). To define the mechanism of activation of PEG-3 as a function of transformation by the Ha-ras and v-raf oncogenes, evaluations of the signaling and transcriptional regulation of the ~2.0 kb promoter region of the PEG-3 gene, PEG-Prom, was undertaken. The full-length and various mutated regions of the PEG-Prom were linked to a luciferase reporter construct and tested for promoter activity in CREF and oncogene-transformed CREF cells. An analysis was also performed using CREF cells doubly transformed with Ha-ras and the Ha-ras specific suppressor gene Krev-1, which inhibits the transformed phenotype in vitro. These assays document an association between expression of the transcription regulator PEA3 and PEG-3. The levels of PEA3 and PEG-3 RNA and proteins are elevated in the oncogenically transformed CREF cells, and reduced in transformation and tumorigenic suppressed Ha-ras/Krev-1 doubly transformed CREF cells. Enhanced tumorigenic behavior, PEG-3 promoter function and PEG-3 expression in Ha-ras transformed cells were all dependent upon increased activity within the mitogen-activated protein kinase (MAPK) pathway. Electrophoretic mobility shift assays and DNase I footprinting experiments indicate that PEA3 binds to sites within the PEG-Prom in transformed rodent cells in an area adjacent to the TATA box in a MAPK-dependent fashion. These findings demonstrate an association between Ha-ras and v-raf transformation of CREF cells with elevated PEA3 and PEG-3 expression, and they implicate MAPK signaling via PEA3 as a signaling cascade involved in activation of the PEG-Prom.
Resumo:
We describe a technique, sequence-tagged microsatellite profiling (STMP), to rapidly generate large numbers of simple sequence repeat (SSR) markers from genomic or cDNA. This technique eliminates the need for library screening to identify SSR-containing clones and provides an ∼25-fold increase in sequencing throughput compared to traditional methods. STMP generates short but characteristic nucleotide sequence tags for fragments that are present within a pool of SSR amplicons. These tags are then ligated together to form concatemers for cloning and sequencing. The analysis of thousands of tags gives rise to a representational profile of the abundance and frequency of SSRs within the DNA pool, from which low copy sequences can be identified. As each tag contains sufficient nucleotide sequence for primer design, their conversion into PCR primers allows the amplification of corresponding full-length fragments from the pool of SSR amplicons. These fragments permit the full characterisation of a SSR locus and provide flanking sequence for the development of a microsatellite marker. Alternatively, sequence tag primers can be used to directly amplify corresponding SSR loci from genomic DNA, thereby reducing the cost of developing a microsatellite marker to the synthesis of just one sequence-specific primer. We demonstrate the utility of STMP by the development of SSR markers in bread wheat.
Resumo:
A reverse transcriptase-polymerase chain reaction experiment was done to synthesize a homologous polyphenol oxidase (PPO) probe from apricot (Prunus armeniaca var Bergeron) fruit. This probe was further used to isolate a full-length PPO cDNA, PA-PPO (accession no. AF020786), from an immature-green fruit cDNA library. PA-PPO is 2070 bp long and contains a single open reading frame encoding a PPO precursor peptide of 597 amino acids with a calculated molecular mass of 67.1 kD and an isoelectric point of 6.84. The mature protein has a predicted molecular mass of 56.2 kD and an isoelectric point of 5.84. PA-PPO belongs to a multigene family. The gene is highly expressed in young, immature-green fruit and is turned off early in the ripening process. The ratio of PPO protein to total proteins per fruit apparently remains stable regardless of the stage of development, whereas PPO specific activity peaks at the breaker stage. These results suggest that, in addition to a transcriptional control of PPO expression, other regulation factors such as translational and posttranslational controls also occur.
Resumo:
Trehalose (α-d-glucopyranosyl-1,1-α-d-glucopyranoside), a disaccharide widespread among microbes and lower invertebrates, is generally believed to be nonexistent in higher plants. However, the recent discovery of Arabidopsis genes whose products are involved in trehalose synthesis has renewed interest in the possibility of a function of trehalose in higher plants. We previously showed that trehalase, the enzyme that degrades trehalose, is present in nodules of soybean (Glycine max [L.] Merr.), and we characterized the enzyme as an apoplastic glycoprotein. Here we describe the purification of this trehalase to homogeneity and the cloning of a full-length cDNA encoding this enzyme, named GMTRE1 (G. max trehalase 1). The amino acid sequence derived from the open reading frame of GMTRE1 shows strong homology to known trehalases from bacteria, fungi, and animals. GMTRE1 is a single-copy gene and is expressed at a low but constant level in many tissues.