876 resultados para Fruit removal
Resumo:
Biological nitrogen removal is an important task in the wastewater treatment. However, the actual removal of total nitrogen (TN) in the wastewater treatment plant (WWTP) is often unsatisfactory due to several causes, one of which is the insufficient availability of carbon source. One possible approach to improve the nitrogen removal therefore is addition of external carbon source, while the amount of which is directly related to operation cost of a WWTP. It is obviously necessary to determine the accurate amount of addition of external carbon source according to the demand depending on the influent wastewater quality. This study focused on the real-time control of external carbon source addition based on the on-line monitoring of influent wastewater quality. The relationship between the influent wastewater quality (specifically the concentration of COD and ammonia) and the demand of carbon source was investigated through experiments on a pilot-scale A/O reactor (1m3) at the Nanjing WWTP, China. The minimum doses of carbon source addition at different situations of influent wastewater quality were determined to ensure the effluent wastewater quality meets the discharge standard. The obtained relationship is expected to be applied in the full-scale WWTPs. .
Resumo:
Comparative studies on the reproductive biology of co-occurring related plant species have provided valuable information for the interpretation of ecological and evolutionary phenomena, with direct application in conservation management of plant populations. The aims of this thesis were to identify the causes of pre-dispersal reproductive losses in three Euphorbia species (the Mediterranean E. characias and the narrow endemics E. pedroi and E. welwitschii) and evaluate the variation of their effects in time, space and between individuals and species. Furthermore, we intended to study elaiosomes’ fatty acid profiles for the three Euphorbia and assess the role played by the elaiosome in ant attraction. Finally, we aimed to identify the major seed dispersal agents for each Euphorbia species in each site and study differences in short term seed fate due to differences in ant behaviour. The results indicated that intact seed production differed significantly between the three Euphorbia, mostly due to differences in cyathia production. Losses to pre-dispersal seed predators were proportionately larger for the endemic species which also suffered higher losses resulting in flower, fruit (in E. welwitschii) and seed abortion (in E. pedroi). The elaiosomes of E. pedroi are poor in fatty acids and for this reason seeds of this species were removed in lower proportion by mutualistic dispersers than those of their congeners, being more prone to seed predation. Two larger ant species – Aphaenogaster senilis and Formica subrufa – were responsible for a larger percentage of removals with seeds being transported at larger distances and being discarded in the vicinity of their nests following elaiosome removal. Our results highlight the role of insect-plant interactions as major determinants of seed survival for the three study plants and call for the need to include more information on insect-plant interactions in plant conservation programmes.
Resumo:
Dynamic headspace solid-phase microextraction (HS-SPME) followed by thermal desorption gas chromatography-quadrupole mass spectrometry analysis (GC-qMS), was used to investigate the aroma profile of different species of passion fruit samples. The performance of five commercially available SPME fibres: 65 μm polydimethylsiloxane/divinylbenzene, PDMS/DVB; 100 μm polydimethylsiloxane, PDMS; 85 μm polyacrylate, PA; 50/30 μm divinylbenzene/carboxen on polydimethylsiloxane, DVB/CAR/PDMS (StableFlex); and 75 μm carboxen/polydimethylsiloxane, CAR/PDMS; was evaluated and compared. Several extraction times and temperature conditions were also tested to achieve optimum recovery. The SPME fibre coated with 65 μm PDMS/DVB afforded the highest extraction efficiency, when the samples were extracted at 50 °C for 40 min with a constant stirring velocity of 750 rpm, after saturating the sample with NaCl (17%, w/v — 0.2 g). A comparison among different passion fruit species has been established in terms of qualitative and semi-quantitative differences in volatile composition. By using the optimal extraction conditions and GC-qMS it was possible to tentatively identify seventy one different compounds in Passiflora species: 51 volatiles in Passiflora edulis Sims (purple passion fruit), 24 in P. edulis Sims f. flavicarpa (yellow passion fruit) and 21 compounds in Passiflora mollissima (banana passion fruit). It was found that the ethyl esters comprise the largest class of the passion fruit volatiles, including 82.8% in P. edulis variety, 77.4% in P. edulis Sims f. flavicarpa variety and 39.9% in P. mollissima. The semi-quantitative results were then submitted to principal component analysis (PCA) in order to establish relationships between the compounds and the different passion fruit species under investigation.
Resumo:
GOMES, Carlos E. M. et al. Effect of trypsin inhibitor from Crotalaria pallida seeds on Callosobruchus maculatus (cowpea weevil) and Ceratitis capitata (fruit fly). Plant Physiology and Biochemistry (Paris), v. 43, n. 12, p. 1095-1102, 2005.ISSN 0981-9428. DOI:10.1016/j.plaphy.2005.11.004.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The most common control method Uses toxic baits consisted of dehydrated citrus pulp as carrier and attractant. However, the portion of the citrus fruit that is attractive to ants is still Unknown, despite its importance in chemical control. This study compared the attractiveness of different fruit parts of citrus pulps to Atta sexdens rubropilosa workers. Three treatments: pellets of industrial citrus pulp, albedo (mesocarp), and whole citrus pulp were offered randomly to ants and the removal of these substrates by workers was observed. Tie three pulps Were equally attractive to this species (F = 0.8033; p = 0.4633). Although the whole pulp included the epicarp, it was as attractive as the other treatments, possibly because, the material was heated during processing, eliminating any volatile substance that could repel ants.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Postbloom fruit drop (PFD), caused by Colletotrichum acutatum, produces blossom blight, fruit abscission and persistent calyces. in groves of Pera-Rio and Natal sweet orange located in Santa Cruz do Rio Pardo and Rincao, São Paulo, Brazil, four experiments were carried out to evaluate the effectiveness of fungicides sprayed alone or as mixtures, at different flowering stages for the control of PFD of citrus. The number of symptomatic flowers, the percentage of fruit set (FS), and the relationship between persistent calyces and total fruit weight per plant were evaluated. The fungicides carbendazim and folpet were sprayed at 0.50 ml and 1.25 ga.i. l(-1) of water, respectively, were superior by all the criteria to the other treatments. Carbendazim and folpet fungicides performed best when they were applied at the green bud through hollow ball stages. Difenoconazole, independent of application timing, was less effective by all criteria used. Application of mancozeb at 1.60 ga.i. l(-1) at the green bud stage followed by application of mancozeb in a tank mix with carbendazim or folpet at 1.0 ml and 1.25 g a.i. l(-1), respectively, during green bud bloom and hollow ball stages were effective for disease control. Carbendazim combined with 0.25% KNO3, reduced the number of persistent calyces and increased fruit production significantly. Applications must be made between green bud and hollow ball stages for best control. Applications only at hollow ball or open flower stages did not provide effective disease control. (C)2007 Elsevier Ltd. All rights reserved.
Resumo:
Citrus black spot (CBS) is a fungal disease, caused by Guignardia citricarpa, that has a high economic impact on citrus. Although G. citricarpa has been associated with black spot of citrus, an adequate pathogenicity test is still not available. Thus, our objective was to develop and evaluate a simple, safe, and practical pathogenicity test. We used fruits from Pera-Rio and Valencia sweet orange trees from two different orchards, located in the State of São Paulo, Brazil. Inoculation was performed by placing six disks colonized by G. citricarpa, onto the peel of healthy fruits, previously bagged. In the Pera-Rio sweet orange grove, initial symptoms of the false melanose type resulting from the inoculations were observed 55 days after inoculation (dai). In the Valencia grove, initial symptoms also of the false melanose type resulting from the inoculations occurred 73 dai. A total of 92.8% and 86.6% of the Pera Rio and Valencia fruits inoculated, respectively, showed symptoms of CBS. Citrus black spot symptoms were not observed in any of the control fruits.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)