966 resultados para Front-Tracking Method
Resumo:
Com a massificação do uso da tecnologia no dia-a-dia, os sistemas de localização têm vindo a aumentar a sua popularidade, devido à grande diversidade de funcionalidades que proporcionam e aplicações a que se destinam. No entanto, a maior parte dos sistemas de posicionamento não funcionam adequadamente em ambientes indoor, impedindo o desenvolvimento de aplicações de localização nestes ambientes. Os acelerómetros são muito utilizados nos sistemas de localização inercial, pelas informações que fornecem acerca das acelerações sofridas por um corpo. Para tal, neste trabalho, recorrendo à análise do sinal de aceleração provindo de um acelerómetro, propõe-se uma técnica baseada na deteção de passos para que, em aplicações futuras, possa constituir-se como um recurso a utilizar para calcular a posição do utilizador dentro de um edifício. Neste sentido, este trabalho tem como objetivo contribuir para o desenvolvimento da análise e identificação do sinal de aceleração obtido num pé, por forma a determinar a duração de um passo e o número de passos dados. Para alcançar o objetivo de estudo foram analisados, com recurso ao Matlab, um conjunto de 12 dados de aceleração (para marcha normal, rápida e corrida) recolhidos por um sistema móvel (e provenientes de um acelerómetro). A partir deste estudo exploratório tornou-se possível apresentar um algoritmo baseado no método de deteção de pico e na utilização de filtros de mediana e Butterworth passa-baixo para a contagem de passos, que apresentou bons resultados. Por forma a validar as informações obtidas nesta fase, procedeu-se, seguidamente, à realização de um conjunto de testes experimentais a partir da recolha de 33 novos dados para a marcha e corrida. Identificaram-se o número de passos efetuados, o tempo médio de passo e da passada e a percentagem de erro como as variáveis em estudo. Obteve-se uma percentagem de erro igual a 1% para o total dos dados recolhidos de 20, 100, 500 e 1000 passos com a aplicação do método proposto para a contagem do passo. Não obstante as dificuldades observadas na análise dos sinais de aceleração relativos à corrida, o algoritmo proposto mostrou bom desempenho, conseguindo valores próximos aos esperados. Os resultados obtidos permitem afirmar que foi possível atingir-se o objetivo de estudo com sucesso. Sugere-se, no entanto, o desenvolvimento de futuras investigações de forma a alargar estes resultados em outras direções.
Resumo:
This work proposes a novel approach for a suitable orientation of antibodies (Ab) on an immunosensing platform, applied here to the determination of 8-hydroxy-2′-deoxyguanosine (8OHdG), a biomarker of oxidative stress that has been associated to chronic diseases, such as cancer. The anti-8OHdG was bound to an amine modified gold support through its Fc region after activation of its carboxylic functions. Non-oriented approaches of Ab binding to the platform were tested in parallel, in order to show that the presented methodology favored Ab/Ag affinity and immunodetection of the antigen. The immunosensor design was evaluated by quartz-crystal microbalance with dissipation, atomic force microscopy, electrochemical impedance spectroscopy (EIS) and square-wave voltammetry. EIS was also a suitable technique to follow the analytical behavior of the device against 8OHdG. The affinity binding between 8OHdG and the antibody immobilized in the gold modified platform increased the charge transfer resistance across the electrochemical set-up. The observed behavior was linear from 0.02 to 7.0 ng/mL of 8OHdG concentrations. The interference from glucose, urea and creatinine was found negligible. An attempt of application to synthetic samples was also successfully conducted. Overall, the presented approach enabled the production of suitably oriented Abs over a gold platform by means of a much simpler process than other oriented-Ab binding approaches described in the literature, as far as we know, and was successful in terms of analytical features and sample application.
Resumo:
The total antioxidant capacity (TAC) of 28 flavoured water samples was assessed by ferric reducing antioxidant potential (FRAP), oxygen radical absorbance capacity (ORAC), trolox equivalent antioxidant capacity (TEAC) and total reactive antioxidant potential (TRAP) methods. It was observed that flavoured waters had higher antioxidant activity than the corresponding natural ones. The observed differences were attributed to flavours, juice and vitamins. Generally, higher TAC contents were obtained on lemon waters and lower values on guava and raspberry flavoured waters. Lower and higher TACs were obtained by TRAP and ORAC method, respectively. Statistical analysis suggested that vitamins and flavours increased the antioxidant content of the commercial waters.
Resumo:
Sulfadiazine is an antibiotic of the sulfonamide group and is used as a veterinary drug in fish farming. Monitoring it in the tanks is fundamental to control the applied doses and avoid environmental dissemination. Pursuing this goal, we included a novel potentiometric design in a flow-injection assembly. The electrode body was a stainless steel needle veterinary syringe of 0.8-mm inner diameter. A selective membrane of PVC acted as a sensory surface. Its composition, the length of the electrode, and other flow variables were optimized. The best performance was obtained for sensors of 1.5-cm length and a membrane composition of 33% PVC, 66% onitrophenyloctyl ether, 1% ion exchanger, and a small amount of a cationic additive. It exhibited Nernstian slopes of 61.0 mV decade-1 down to 1.0×10-5 mol L-1, with a limit of detection of 3.1×10-6 mol L-1 in flowing media. All necessary pH/ionic strength adjustments were performed online by merging the sample plug with a buffer carrier of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid, pH 4.9. The sensor exhibited the advantages of a fast response time (less than 15 s), long operational lifetime (60 days), and good selectivity for chloride, nitrite, acetate, tartrate, citrate, and ascorbate. The flow setup was successfully applied to the analysis of aquaculture waters. The analytical results were validated against those obtained with liquid chromatography–tandem mass spectrometry procedures. The sampling rate was about 84 samples per hour and recoveries ranged from 95.9 to 106.9%.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
Cryptococcus neoformans detection was optimized using PCR technique with the objective of application in the clinical laboratory diagnosis. The amplification area was ITS and 5,6S which encodes the ribosomal RNA (rRNA). A total of 72 cerebrospinal fluid (CSF) samples were used, obtained from cases with and without AIDS. The patients had cryptococcal meningitis (n = 56) and meningitis caused by other agents (n = 16). The results demonstrated that PCR test had the highest sensitivity rates, superior to culture (85.7%) and to India ink test (76.8%). PCR was found to be sensitive in detecting 1 cell/mL and highly specific since it did not amplify other fungal DNA. The comparative analysis of the methods showed that PCR is more sensitive and specific and is applicable as an important laboratorial resource for neurocryptococcosis diagnosis.
Resumo:
The pathogenesis of the renal lesion upon envenomation by snakebite has been related to myolysis, hemolysis, hypotension and/or direct venom nephrotoxicity caused by the venom. Both primary and continuous cell culture systems provide an in vitro alternative for quantitative evaluation of the toxicity of snake venoms. Crude Crotalus vegrandis venom was fractionated by molecular exclusion chromatography. The toxicity of C. vegrandis crude venom, hemorrhagic, and neurotoxic fractions were evaluated on mouse primary renal cells and a continuous cell line of Vero cells maintained in vitro. Cells were isolated from murine renal cortex and were grown in 96 well plates with Dulbecco's Modified Essential Medium (DMEM) and challenged with crude and venom fractions. The murine renal cortex cells exhibited epithelial morphology and the majority showed smooth muscle actin determined by immune-staining. The cytotoxicity was evaluated by the tetrazolium colorimetric method. Cell viability was less for crude venom, followed by the hemorrhagic and neurotoxic fractions with a CT50 of 4.93, 18.41 and 50.22 µg/mL, respectively. The Vero cell cultures seemed to be more sensitive with a CT50 of 2.9 and 1.4 µg/mL for crude venom and the hemorrhagic peak, respectively. The results of this study show the potential of using cell culture system to evaluate venom toxicity.
Resumo:
The paper presents a RFDSCA automated synthesis procedure. This algorithm determines several RFDSCA circuits from the top-level system specifications all with the same maximum performance. The genetic synthesis tool optimizes a fitness function proportional to the RFDSCA quality factor and uses the epsiv-concept and maximin sorting scheme to achieve a set of solutions well distributed along a non-dominated front. To confirm the results of the algorithm, three RFDSCAs were simulated in SpectreRF and one of them was implemented and tested. The design used a 0.25 mum BiCMOS process. All the results (synthesized, simulated and measured) are very close, which indicate that the genetic synthesis method is a very useful tool to design optimum performance RFDSCAs.
Resumo:
In this paper we present a set of field tests for detection of human in the water with an unmanned surface vehicle using infrared and color cameras. These experiments aimed to contribute in the development of victim target tracking and obstacle avoidance for unmanned surface vehicles operating in marine search and rescue missions. This research is integrated in the work conducted in the European FP7 research project Icarus aiming to develop robotic tools for large scale rescue operations. The tests consisted in the use of the ROAZ unmanned surface vehicle equipped with a precision GPS system for localization and both visible spectrum and IR cameras to detect the target. In the experimental setup, the test human target was deployed in the water wearing a life vest and a diver suit (thus having lower temperature signature in the body except hands and head) and was equipped with a GPS logger. Multiple target approaches were performed in order to test the system with different sun incidence relative angles. The experimental setup, detection method and preliminary results from the field trials performed in the summer of 2013 in Sesimbra, Portugal and in La Spezia, Italy are also presented in this work.
Resumo:
Oceans - San Diego, 2013
Resumo:
This work presents an automatic calibration method for a vision based external underwater ground-truth positioning system. These systems are a relevant tool in benchmarking and assessing the quality of research in underwater robotics applications. A stereo vision system can in suitable environments such as test tanks or in clear water conditions provide accurate position with low cost and flexible operation. In this work we present a two step extrinsic camera parameter calibration procedure in order to reduce the setup time and provide accurate results. The proposed method uses a planar homography decomposition in order to determine the relative camera poses and the determination of vanishing points of detected lines in the image to obtain the global pose of the stereo rig in the reference frame. This method was applied to our external vision based ground-truth at the INESC TEC/Robotics test tank. Results are presented in comparison with an precise calibration performed using points obtained from an accurate 3D LIDAR modelling of the environment.
Resumo:
Nucleic Acid Testing (NAT) as a tool for primary screening of blood donors became a reality in the end of the 1990 decade. We report here the development of an "in-house" RT-PCR method that allows the simultaneous (multiplex) detection of HCV and HIV-RNA in addition to an artificial RNA employed as an external control. This method detects all HIV group M subtypes, plus group N and O, with a detection threshold of 500 IU/mL. After validation, the method replaced p24 Ag testing, in use for blood donation screening since 1996 at our services. From July 2001 to February 2006, 102,469 donations were tested and 41 (0.04%) were found HIV-RNA reactive. One NAT-only reactive donation (antibody non-reactive) was observed, with subsequent seroconversion of the implied donor, giving a yield of 1:102,469. This rate is in contrast to the international experience that reports a detection of approximately 1:600,000 - 1:3,100,000 of isolated HIV-RNA donations.
Resumo:
An "in-house" RT-PCR method was developed that allows the simultaneous detection of the RNA of the Hepatitis C Virus (HCV) and an artificial RNA employed as an external control. Samples were analyzed in pools of 6-12 donations, each donation included in two pools, one horizontal and one vertical, permitting the immediate identification of a reactive donation, obviating the need for pool dismembering. The whole process took 6-8 hours per day and results were issued in parallel to serology. The method was shown to detect all six HCV genotypes and a sensitivity of 500 IU/mL was achieved (95% hit rate). Until July 2005, 139,678 donations were tested and 315 (0.23%) were found reactive for HCV-RNA. Except for five false-positives, all 310 presented the corresponding antibody as well, so the yield of NAT-only donations was zero, presenting a specificity of 99.83%. Detection of a window period donation, in the population studied, will probably demand testing of a larger number of donations. International experience is showing a rate of 1:200,000 - 1:500,000 of isolated HCV-RNA reactive donations.