961 resultados para Fourier expansion
Resumo:
L’obiettivo del presente lavoro di tesi è stato quello di analizzare i campioni di otoliti delle due specie del genere Mullus (Mullus barbatus e Mullus surmuletus) per mezzo dell’Analisi Ellittica di Fourier (EFA) e l’analisi di morfometria classica con gli indici di forma, al fine di verificare la simmetria tra l’otolite destro e sinistro in ognuna delle singole specie di Mullus e se varia la forma in base alla taglia dell’individuo. Con l’EFA è stato possibile mettere a confronto le forme degli otoliti facendo i confronti multipli in base alla faccia, al sesso e alla classe di taglia. Inoltre è stato fatto un confronto tra le forme degli otoliti delle due specie. Dalle analisi EFA è stato possibile anche valutare se gli esemplari raccolti appartenessero tutti al medesimo stock o a stock differenti. Gli otoliti appartengono agli esemplari di triglia catturati durante la campagna sperimentale MEDITS 2012. Per i campioni di Mullus surmuletus, data la modesta quantità, sono stati analizzati anche gli otoliti provenienti dalla campagna MEDITS 2014 e GRUND 2002. I campioni sono stati puliti e analizzati allo stereomicroscopio con telecamera e collegato ad un PC fornito di programma di analisi di immagine. Dalle analisi di morfometria classica sugli otoliti delle due specie si può sostenere che in generale vi sia una simmetria tra l’otolite destro e sinistro. Dalle analisi EFA sono state riscontrate differenze significative in tutti i confronti, anche nel confronto tra le due specie. I campioni sembrano però appartenere al medesimo stock. In conclusione si può dire che l’analisi di morfometria classica ha dato dei risultati congrui con quello che ci si aspettava. I risultati dell’analisi EFA invece hanno evidenziato delle differenze significative che dimostrano una superiore potenza discriminante. La particolare sensibilità dell’analisi dei contorni impone un controllo di qualità rigoroso durante l’acquisizione delle forme.
Resumo:
Questa tesi affronta uno dei principali argomenti trattati dalla finanza matematica: la determinazione del prezzo dei derivati finanziari. Esistono diversi metodi per trattare questo tema, ma in particolare vengono illustrati i metodi che usano la trasformata di Fourier. Questi ultimi infatti ci permettono di sostituire il calcolo dell'attesa condizionata scontata, con il calcolo dell'integrale della trasformata di Fourier, in quanto la funzione caratteristica, cioè la trasformata di Fourier della funzione densità, è più trattabile rispetto alla funzione densità stessa. Vengono in primo luogo analizzate alcune importanti formule di valutazione e successivamente implementate, attraverso il software Mathematica. I modelli di riferimento utilizzati per l'implementazione sono il modello di Black-Scholes e il modello di Merton.
Resumo:
Questo elaborato si concentra sullo studio della trasformata di Fourier e della trasformata Wavelet. Nella prima parte della tesi si analizzano gli aspetti fondamentali della trasformata di Fourier. Si definisce poi la trasformata di Fourier su gruppi abeliani finiti, richiamando opportunamente la struttura di tali gruppi. Si mostra che calcolare la trasformata di Fourier nel quoziente richiede un minor numero di operazioni rispetto a calcolarla direttamente nel gruppo di partenza. L'ultima parte dell'elaborato si occupa dello studio delle Wavelet, dette ondine. Viene presentato quindi il sistema di Haar che permette di definire una funzione come serie di funzioni di Haar in alternativa alla serie di Fourier. Si propone poi un vero e proprio metodo per la costruzione delle ondine e si osserva che tale costruzione è strettamente legata all'analisi multirisoluzione. Un ruolo cruciale viene svolto dall'identità di scala, un'identità algebrica che permette di definire certi coefficienti che determinano completamente le ondine. Interviene poi la trasformata di Fourier che riduce la ricerca dei coefficienti sopra citati, alla ricerca di certe funzioni opportune che determinano esplicitamente le Wavelet. Non tutte le scelte di queste funzioni sono accettabili. Ci sono vari approcci, qui viene presentato l'approccio di Ingrid Daubechies. Le Wavelet costituiscono basi per lo spazio di funzioni a quadrato sommabile e sono particolarmente interessanti per la decomposizione dei segnali. Sono quindi in relazione con l'analisi armonica e sono adottate in un gran numero di applicazioni. Spesso sostituiscono la trasformata di Fourier convenzionale.
Resumo:
We give a brief review of the Functional Renormalization method in quantum field theory, which is intrinsically non perturbative, in terms of both the Polchinski equation for the Wilsonian action and the Wetterich equation for the generator of the proper verteces. For the latter case we show a simple application for a theory with one real scalar field within the LPA and LPA' approximations. For the first case, instead, we give a covariant "Hamiltonian" version of the Polchinski equation which consists in doing a Legendre transform of the flow for the corresponding effective Lagrangian replacing arbitrary high order derivative of fields with momenta fields. This approach is suitable for studying new truncations in the derivative expansion. We apply this formulation for a theory with one real scalar field and, as a novel result, derive the flow equations for a theory with N real scalar fields with the O(N) internal symmetry. Within this new approach we analyze numerically the scaling solutions for N=1 in d=3 (critical Ising model), at the leading order in the derivative expansion with an infinite number of couplings, encoded in two functions V(phi) and Z(phi), obtaining an estimate for the quantum anomalous dimension with a 10% accuracy (confronting with Monte Carlo results).
Resumo:
Conventional time-domain optical coherence tomography (OCT) has become an important tool for following dry or exudative age-related macular degeneration (AMD). Fourier-domain three-dimensional (3D) OCT was recently introduced. This study tested the reproducibility of 3D-OCT retinal thickness measurements in patients with dry and exudative AMD.
Resumo:
Widespread central hypersensitivity is present in chronic pain and contributes to pain and disability. According to animal studies, expansion of receptive fields of spinal cord neurons is involved in central hypersensitivity. We recently developed a method to quantify nociceptive receptive fields in humans using spinal withdrawal reflexes. Here we hypothesized that patients with chronic pelvic pain display enlarged reflex receptive fields. Secondary endpoints were subjective pain thresholds and nociceptive withdrawal reflex thresholds after single and repeated (temporal summation) electrical stimulation. 20 patients and 25 pain-free subjects were tested. Electrical stimuli were applied to 10 sites on the foot sole for evoking reflexes in the tibialis anterior muscle. The reflex receptive field was defined as the area of the foot (fraction of the foot sole) from which a muscle contraction was evoked. For the secondary endpoints, the stimuli were applied to the cutaneous innervation area of the sural nerve. Medians (25-75 percentiles) of fraction of the foot sole in patients and controls were 0.48 (0.38-0.54) and 0.33 (0.27-0.39), respectively (P=0.008). Pain and reflex thresholds after sural nerve stimulation were significantly lower in patients than in controls (P<0.001 for all measurements). This study provides for the first time evidence for widespread expansion of reflex receptive fields in chronic pain patients. It thereby identifies a mechanism involved in central hypersensitivity in human chronic pain. Reverting the expansion of nociceptive receptive fields and exploring the prognostic meaning of this phenomenon may become future targets of clinical research.
Resumo:
Volumetric data at micrometer level resolution can be acquired within a few minutes using synchrotron-radiation-based tomographic microscopy. The field of view along the rotation axis of the sample can easily be increased by stacking several tomograms, allowing the investigation of long and thin objects at high resolution. On the contrary, an extension of the field of view in the perpendicular direction is non-trivial. This paper presents an acquisition protocol which increases the field of view of the tomographic dataset perpendicular to its rotation axis. The acquisition protocol can be tuned as a function of the reconstruction quality and scanning time. Since the scanning time is proportional to the radiation dose imparted to the sample, this method can be used to increase the field of view of tomographic microscopy instruments while optimizing the radiation dose for radiation-sensitive samples and keeping the quality of the tomographic dataset on the required level. This approach, dubbed wide-field synchrotron radiation tomographic microscopy, can increase the lateral field of view up to five times. The method has been successfully applied for the three-dimensional imaging of entire rat lung acini with a diameter of 4.1 mm at a voxel size of 1.48 microm.
Resumo:
To evaluate the intraoperative use of handheld Fourier-domain optical coherence tomography (OCT) during Descemet stripping automated endothelial keratoplasty (DSAEK) to assess the donor-host interface.