944 resultados para Forcing (Plants)
Resumo:
HFC-134a (CF3CH2F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50–100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly 25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A “recommended'' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the “recommended'' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount.
Resumo:
On the time scale of a century, the Atlantic thermohaline circulation (THC) is sensitive to the global surface salinity distribution. The advection of salinity toward the deep convection sites of the North Atlantic is one of the driving mechanisms for the THC. There is both a northward and a southward contributions. The northward salinity advection (Nsa) is related to the evaporation in the subtropics, and contributes to increased salinity in the convection sites. The southward salinity advection (Ssa) is related to the Arctic freshwater forcing and tends on the contrary to diminish salinity in the convection sites. The THC changes results from a delicate balance between these opposing mechanisms. In this study we evaluate these two effects using the IPSL-CM4 ocean-atmosphere-sea-ice coupled model (used for IPCC AR4). Perturbation experiments have been integrated for 100 years under modern insolation and trace gases. River runoff and evaporation minus precipitation are successively set to zero for the ocean during the coupling procedure. This allows the effect of processes Nsa and Ssa to be estimated with their specific time scales. It is shown that the convection sites in the North Atlantic exhibit various sensitivities to these processes. The Labrador Sea exhibits a dominant sensitivity to local forcing and Ssa with a typical time scale of 10 years, whereas the Irminger Sea is mostly sensitive to Nsa with a 15 year time scale. The GIN Seas respond to both effects with a time scale of 10 years for Ssa and 20 years for Nsa. It is concluded that, in the IPSL-CM4, the global freshwater forcing damps the THC on centennial time scales.
Resumo:
1. Habitat fragmentation can affect pollinator and plant population structure in terms of species composition, abundance, area covered and density of flowering plants. This, in turn, may affect pollinator visitation frequency, pollen deposition, seed set and plant fitness. 2. A reduction in the quantity of flower visits can be coupled with a reduction in the quality of pollination service and hence the plants’ overall reproductive success and long-term survival. Understanding the relationship between plant population size and⁄ or isolation and pollination limitation is of fundamental importance for plant conservation. 3. Weexamined flower visitation and seed set of 10 different plant species fromfive European countries to investigate the general effects of plant populations size and density, both within (patch level) and between populations (population level), on seed set and pollination limitation. 4. Wefound evidence that the effects of area and density of flowering plant assemblages were generally more pronounced at the patch level than at the population level. We also found that patch and population level together influenced flower visitation and seed set, and the latter increased with increasing patch area and density, but this effect was only apparent in small populations. 5. Synthesis. By using an extensive pan-European data set on flower visitation and seed set we have identified a general pattern in the interplay between the attractiveness of flowering plant patches for pollinators and density dependence of flower visitation, and also a strong plant species-specific response to habitat fragmentation effects. This can guide efforts to conserve plant–pollinator interactions, ecosystem functioning and plant fitness in fragmented habitats.
Resumo:
An in silico screen of 41 of the 81 coding regions of the Nicotiana plastid genome generated a shortlist of 12 candidates as DNA barcoding loci for land plants. These loci were evaluated for amplification and sequence variation against a reference set of 98 land plant taxa. The deployment of multiple primers and a modified multiplexed tandem polymerase chain reaction yielded 85–94% amplification across taxa, and mean sequence differences between sister taxa of 6.1 from 156 bases of accD to 22 from 493 bases of matK. We conclude that loci should be combined for effective diagnosis, and recommend further investigation of the following six loci: matK, rpoB, rpoC1, ndhJ, ycf5 and accD.
Resumo:
The first haploid angiosperm, a dwarf form of cotton with half the normal chromosome complement, was discovered in 1920, and in the ninety years since then such plants have been identified in many other species. They can occur either spontaneously or can be induced by modified pollination methods in vivo, or by in vitro culture of immature male or female gametophytes. Haploids represent an immediate, one-stage route to homozygous diploids and thence to F(1) hybrid production. The commercial exploitation of heterosis in such F(1) hybrids leads to the development of hybrid seed companies and subsequently to the GM revolution in agriculture. This review describes the range of techniques available for the isolation or induction of haploids and discusses their value in a range of areas, from fundamental research on mutant isolation and transformation, through to applied aspects of quantitative genetics and plant breeding. It will also focus on how molecular methods have been used recently to explore some of the underlying aspects of this fascinating developmental phenomenon.
Resumo:
Land plants have had the reputation of being problematic for DNA barcoding for two general reasons: (i) the standard DNA regions used in algae, animals and fungi have exceedingly low levels of variability and (ii) the typically used land plant plastid phylogenetic markers (e.g. rbcL, trnL-F, etc.) appear to have too little variation. However, no one has assessed how well current phylogenetic resources might work in the context of identification (versus phylogeny reconstruction). In this paper, we make such an assessment, particularly with two of the markers commonly sequenced in land plant phylogenetic studies, plastid rbcL and internal transcribed spacers of the large subunits of nuclear ribosomal DNA (ITS), and find that both of these DNA regions perform well even though the data currently available in GenBank/EBI were not produced to be used as barcodes and BLAST searches are not an ideal tool for this purpose. These results bode well for the use of even more variable regions of plastid DNA (such as, for example, psbA-trnH) as barcodes, once they have been widely sequenced. In the short term, efforts to bring land plant barcoding up to the standards being used now in other organisms should make swift progress. There are two categories of DNA barcode users, scientists in fields other than taxonomy and taxonomists. For the former, the use of mitochondrial and plastid DNA, the two most easily assessed genomes, is at least in the short term a useful tool that permits them to get on with their studies, which depend on knowing roughly which species or species groups they are dealing with, but these same DNA regions have important drawbacks for use in taxonomic studies (i.e. studies designed to elucidate species limits). For these purposes, DNA markers from uniparentally (usually maternally) inherited genomes can only provide half of the story required to improve taxonomic standards being used in DNA barcoding. In the long term, we will need to develop more sophisticated barcoding tools, which would be multiple, low-copy nuclear markers with sufficient genetic variability and PCR-reliability; these would permit the detection of hybrids and permit researchers to identify the 'genetic gaps' that are useful in assessing species limits.
Resumo:
This review summarizes the recent discovery of the cupin superfamily (from the Latin term "cupa," a small barrel) of functionally diverse proteins that initially were limited to several higher plant proteins such as seed storage proteins, germin (an oxalate oxidase), germin-like proteins, and auxin-binding protein. Knowledge of the three-dimensional structure of two vicilins, seed proteins with a characteristic beta-barrel core, led to the identification of a small number of conserved residues and thence to the discovery of several microbial proteins which share these key amino acids. In particular, there is a highly conserved pattern of two histidine-containing motifs with a varied intermotif spacing. This cupin signature is found as a central component of many microbial proteins including certain types of phosphomannose isomerase, polyketide synthase, epimerase, and dioxygenase. In addition, the signature has been identified within the N-terminal effector domain in a subgroup of bacterial AraC transcription factors. As well as these single-domain cupins, this survey has identified other classes of two-domain bicupins including bacterial gentisate 1, 2-dioxygenases and 1-hydroxy-2-naphthoate dioxygenases, fungal oxalate decarboxylases, and legume sucrose-binding proteins. Cupin evolution is discussed from the perspective of the structure-function relationships, using data from the genomes of several prokaryotes, especially Bacillus subtilis. Many of these functions involve aspects of sugar metabolism and cell wall synthesis and are concerned with responses to abiotic stress such as heat, desiccation, or starvation. Particular emphasis is also given to the oxalate-degrading enzymes from microbes, their biological significance, and their value in a range of medical and other applications.
Resumo:
We have developed a heterologous expression system for transmembrane lens main intrinsic protein (MIP) in Nicotiana tabacum plant tissue. A native bovine MIP26 amplicon was subcloned into an expression cassette under the control of a constitutive Cauliflower Mosaic Virus promoter, also containing a neomycin phosphotransferase operon. This cassette was transformed into Agrobacterium tumefaciens by triparental mating and used to infect plant tissue grown in culture. Recombinant plants were selected by their ability to grow and root on kanamycin-containing media. The presence of MIP in the plant tissues was confirmed by PCR, RT-PCR and immunohistochemistry. A number of benefits of this system for the study of MIP will be discussed, and also its application as a tool for the study of heterologously expressed proteins in general.
Resumo:
The year 2000 radiative forcing (RF) due to changes in O3 and CH4 (and the CH4-induced stratospheric water vapour) as a result of emissions of short-lived gases (oxides of nitrogen (NOx), carbon monoxide and non-methane hydrocarbons) from three transport sectors (ROAD, maritime SHIPping and AIRcraft) are calculated using results from five global atmospheric chemistry models. Using results from these models plus other published data, we quantify the uncertainties. The RF due to short-term O3 changes (i.e. as an immediate response to the emissions without allowing for the long-term CH4 changes) is positive and highest for ROAD transport (31mWm-2) compared to SHIP (24 mWm-2) and AIR (17 mWm-2) sectors in four of the models. All five models calculate negative RF from the CH4 perturbations, with a larger impact from the SHIP sector than for ROAD and AIR. The net RF of O3 and CH4 combined (i.e. including the impact of CH4 on ozone and stratospheric water vapour) is positive for ROAD (+16(±13)(one standard deviation) mWm-2) and AIR (+6(±5) mWm-2) traffic sectors and is negative for SHIP (-18(±10) mWm-2) sector in all five models. Global Warming Potentials (GWP) and Global Temperature change Potentials (GTP) are presented for AIR NOx emissions; there is a wide spread in the results from the 5 chemistry models, and it is shown that differences in the methane response relative to the O3 response drive much of the spread.
Resumo:
The Organisation for Economic Co-operation and Development (OECD) Terrestrial plant test is often used for the ecological risk assessment of contaminated land. However, its origins in plant protection product testing mean that the species recommended in the OECD guidelines are unlikely to occur on contaminated land. Six alternative species were tested on contaminated soils from a former Zn smelter and a metal fragmentizer with elevated concentrations of Cd, Cu, Pb, and Zn. The response of the alternative species was compared to two species recommended by the OECD; Lolium perenne (perennial ryegrass) and Trifolium pratense (red clover). Urtica dioica (stinging nettle) and Poa annua (annual meadow-grass) had low emergence rates in the control soil so may be considered unsuitable. Festuca rubra (chewings fescue), Holcus lanatus (Yorkshire fog), Senecio vulgaris (common groundsel), and Verbascum thapsus (great mullein) offer good alternatives to the OECD species. In particular, H. lanatus and S. vulgaris were more sensitive to the soils with moderate concentrations of Cd, Cu, Pb, and Zn than the OECD species.