905 resultados para Force transducers
Resumo:
Vibration rotation spectra of HO15 NO and DO15 NO have been measured at a resolution of 0•04 cm-1 to determine the isotopic shifts in the vibrational band origins. These have been used together with recently determined data on the vibrational band origins, Coriolis constants, and centrifugal distorition constants, to determine the harmonic force field of both cis and trans nitrous acid in least squares refinement calculations. The results are discussed in relation to recent ab initio calculations, the inertia defects, and the torsional potential function.
Resumo:
The presently available microwave, millimeter wave, and far-infrared data of five isotopic species of isocyanic acid, namely, HNCO, H15NCO, HN13CO, HNC18O, and DNCO, have been used to obtain improved values of the ground-state rotational constants, the five quartic distortion constants, and some higher-order distortion constants in the Ir S reduced Hamiltonian of Watson. The appropriate planarity relation among the quartic centrifugal distortion constants has been imposed in the fitting procedure. The general harmonic force field of isocyanic acid has been determined using all existing data, and assuming a trans bent equilibrium geometry of the molecule with an NCO angle of 170°. Finally an rz structure has been obtained using the Az, Bz, and Cz rotational constants of five isotopic species. The bending of the NCO chain is found to be 8° in the trans configuration.
Resumo:
Infrared spectra of the two stretching fundamentals of both HBS and DBS have been observed, using a continuous flow system through a multiple reflection long path cell at a pressure around 1 Torr and a Nicolet Fourier Transform spectrometer with a resolution of about 0•1 cm-1. The v3 BS stretching fundamental of DBS, near 1140 cm-1, is observed in strong Fermi resonance with the overtone of the bend 2v2. The bending fundamental v2 has not been observed and must be a very weak band. The analysis of the results in conjunction with earlier work gives the equilibrium structure (re(BH) = 1•1698(12) , re(BS) = 1•5978(3) ) and the harmonic and anharmonic force field.
Resumo:
A high resolution Fourier transform infrared spectrum of methyleneimine, HN=CH2, has been obtained in the gas phase in the region 700 to 1300 cm−1. The rovibrational line intensities of the three lowest fundamentals ν7 (A′), ν8 (A″), and ν9 (A″) have been simulated including all Coriolis interactions between the three bands, and by fitting the observed spectrum the relative signs and magnitudes of the vibrational transition moments have been determined. All of the available spectroscopic data have been used to determine the harmonic force field of methyleneimine.
Resumo:
The theory of harmonic force constant refinement calculations is reviewed, and a general-purpose program for force constant and normal coordinate calculations is described. The program, called ASYM20. is available through Quantum Chemistry Program Exchange. It will work on molecules of any symmetry containing up to 20 atoms and will produce results on a series of isotopomers as desired. The vibrational secular equations are solved in either nonredundant valence internal coordinates or symmetry coordinates. As well as calculating the (harmonic) vibrational wavenumbers and normal coordinates, the program will calculate centrifugal distortion constants, Coriolis zeta constants, harmonic contributions to the α′s. root-mean-square amplitudes of vibration, and other quantities related to gas electron-diffraction studies and thermodynamic properties. The program will work in either a predict mode, in which it calculates results from an input force field, or in a refine mode, in which it refines an input force field by least squares to fit observed data on the quantities mentioned above. Predicate values of the force constants may be included in the data set for a least-squares refinement. The program is written in FORTRAN for use on a PC or a mainframe computer. Operation is mainly controlled by steering indices in the input data file, but some interactive control is also implemented.
Resumo:
Force constant and normal co-ordinate calculations are reported for the E species vibrations of the allene molecule. Data on the fundamental vibration frequencies of allene-h4, allene-d4 and allene-1.1-d2 and on the five experimentally determined Coriolis zeta constants of C3H4 and C3D4, were used in a force constant refinement procedure. Allowing for product and sum rules this gives 21 independent data which were used to refine to the most general harmonic force field (10 parameters) with one constraint (in the absence of any constraints the refinement was not satisfactory). The results have been used to calculate the complete ζz Coriolis interaction matrix for the allene-1.1-d2 molecule, and hence to calculate the expected rotational structure of the perpendicular bending vibrations of this molecule; the good agreement obtained with the observed spectra is a check on our results.
Resumo:
The complete general harmonic force field of methyl flouride was recalculated using the most recent literature frequency, Coriolis ζ, and centrifugal distortion data for 12CH3F, 13CH3F, 12CD3F, 12CHD2F and 12CH2DF. The anharmonic corrections applied to the observed frequency data and the adopted molecular geometry are considered to be more realistic than those used hitherto. There is excellent overall agreement between the fitted force constants and the highest quality ab initio force field currently available.
Resumo:
We discuss a novel approach that would lead to the development of an ultrasonic optical force-feedback measurement microphone.
Resumo:
The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition, Mstn(-/-) muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.
Resumo:
Ellipsometry and atomic force microscopy (AFM) were used to study the film thickness and the surface roughness of both 'soft' and solid thin films. 'Soft' polymer thin films of polystyrene and poly(styrene-ethylene/butylene-styrene) block copolymer were prepared by spin-coating onto planar silicon wafers. Ellipsometric parameters were fitted by the Cauchy approach using a two-layer model with planar boundaries between the layers. The smooth surfaces of the prepared polymer films were confirmed by AFM. There is good agreement between AFM and ellipsometry in the 80-130 nm thickness range. Semiconductor surfaces (Si) obtained by anisotropic chemical etching were investigated as an example of a randomly rough surface. To define roughness parameters by ellipsometry, the top rough layers were treated as thin films according to the Bruggeman effective medium approximation (BEMA). Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased etching time, although AFM results depend on the used window size. The combined use of both methods appears to offer the most comprehensive route to quantitative surface roughness characterisation of solid films. Copyright (c) 2007 John Wiley & Sons, Ltd.