959 resultados para Fluid dynamics -- Computer simulation
Resumo:
"This report was prepared in connection with Space Technology Laboratories Program of General Research."
Resumo:
"Contract no. N61339-1089."
Resumo:
"Results from a search of the technical report database ... references cover only unclassified, unlimited document references with abstracts."
Resumo:
"Contract W-7405-ENG. 36 with the U.S. Atomic Energy Commission."
Resumo:
"January 1980."
Resumo:
Item 247.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Research carried out under Naval Ship Systems Command, General Hydromechanics Research Program, subproject SR 009 01 01, administered by the Naval Ship Research and Development Center, contract no. N00014-67-A-0220-0003.
Resumo:
"Work performed under contract no. W-7405-Eng-26"
Resumo:
Adsorption of ethylene and ethane on graphitized thermal carbon black and in slit pores whose walls are composed of graphene layers is studied in detail to investigate the packing efficiency, the two-dimensional critical temperature, and the variation of the isosteric heat of adsorption with loading and temperature. Here we used a Monte Carlo simulation method with a grand canonical Monte Carlo ensemble. A number of two-center Lennard-Jones (LJ) potential models are investigated to study the impact of the choice of potential models in the description of adsorption behavior. We chose two 2C-LJ potential models in our investigation of the (i) UA-TraPPE-LJ model of Martin and Siepmann (J. Phys. Chem. B 1998,102, 25692577) for ethane and Wick et al. (J. Phys. Chem. B 2000,104, 8008-8016) for ethylene and (ii) AUA4-LJ model of Ungerer et al. (J. Chem. Phys. 2000,112, 5499-5510) for ethane and Bourasseau et al. (J. Chem. Phys. 2003, 118, 3020-3034) for ethylene. These models are used to study the adsorption of ethane and ethylene on graphitized thermal carbon black. It is found that the solid-fluid binary interaction parameter is a function of adsorbate and temperature, and the adsorption isotherms and heat of adsorption are well described by both the UA-TraPPE and AUA models, although the UA-TraPPE model performs slightly better. However, the local distributions predicted by these two models are slightly different. These two models are used to explore the two-dimensional condensation for the graphitized thermal carbon black, and these values are 110 K for ethylene and 120 K for ethane.
Resumo:
In this paper we consider the adsorption of argon on the surface of graphitized thermal carbon black and in slit pores at temperatures ranging from subcritical to supercritical conditions by the method of grand canonical Monte Carlo simulation. Attention is paid to the variation of the adsorbed density when the temperature crosses the critical point. The behavior of the adsorbed density versus pressure (bulk density) shows interesting behavior at temperatures in the vicinity of and those above the critical point and also at extremely high pressures. Isotherms at temperatures greater than the critical temperature exhibit a clear maximum, and near the critical temperature this maximum is a very sharp spike. Under the supercritical conditions and very high pressure the excess of adsorbed density decreases towards zero value for a graphite surface, while for slit pores negative excess density is possible at extremely high pressures. For imperfect pores (defined as pores that cannot accommodate an integral number of parallel layers under moderate conditions) the pressure at which the excess pore density becomes negative is less than that for perfect pores, and this is due to the packing effect in those imperfect pores. However, at extremely high pressure molecules can be packed in parallel layers once chemical potential is great enough to overcome the repulsions among adsorbed molecules. (c) 2005 American Institute of Physics.
Resumo:
It has been suggested that growth cones navigating through the developing nervous system might display adaptation, so that their response to gradient signals is conserved over wide variations in ligand concentration. Recently however, a new chemotaxis assay that allows the effect of gradient parameters on axonal trajectories to be finely varied has revealed a decline in gradient sensitivity on either side of an optimal concentration. We show that this behavior can be quantitatively reproduced with a computational model of axonal chemotaxis that does not employ explicit adaptation. Two crucial components of this model required to reproduce the observed sensitivity are spatial and temporal averaging. These can be interpreted as corresponding, respectively, to the spatial spread of signaling effects downstream from receptor binding, and to the finite time over which these signaling effects decay. For spatial averaging, the model predicts that an effective range of roughly one-third of the extent of the growth cone is optimal for detecting small gradient signals. For temporal decay, a timescale of about 3 minutes is required for the model to reproduce the experimentally observed sensitivity.
Resumo:
A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.
Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media
Resumo:
DEM modelling of the motion of coarse fractions of the charge inside SAG mills has now been well established for more than a decade. In these models the effect of slurry has broadly been ignored due to its complexity. Smoothed particle hydrodynamics (SPH) provides a particle based method for modelling complex free surface fluid flows and is well suited to modelling fluid flow in mills. Previous modelling has demonstrated the powerful ability of SPH to capture dynamic fluid flow effects such as lifters crashing into slurry pools, fluid draining from lifters, flow through grates and pulp lifter discharge. However, all these examples were limited by the ability to model only the slurry in the mill without the charge. In this paper, we represent the charge as a dynamic porous media through which the SPH fluid is then able to flow. The porous media properties (specifically the spatial distribution of porosity and velocity) are predicted by time averaging the mill charge predicted using a large scale DEM model. This allows prediction of transient and steady state slurry distributions in the mill and allows its variation with operating parameters, slurry viscosity and slurry volume, to be explored. (C) 2006 Published by Elsevier Ltd.