866 resultados para Finned heat pipes
Resumo:
A tangential filtration process was implemented in this study using porous ceramic tubes made of alpha-alumina produced by the slip-casting technique. These tubes were sintered at 1450 degrees C and characterized by mercury intrusion porosimetry, which revealed a mean pore size of 0.5 mu m. The tubes were chemically impregnated with a zirconium citrate solution, after which they were calcined and heat treated at temperatures of up to 600 and 900 degrees C to eliminate volatile organic compounds and transform the zirconium citrate into zirconium oxide impregnated in the alumina in the form of nanoparticle agglomerates. The microporous pipes were tested on a microfiltration hydraulic system to analyze their performance in the demulsification of sunflower oil and water mixtures. The fluid-dynamic parameters of Reynolds number and transmembrane pressure were varied in the process. The volume of permeate was analyzed by measuring the Total Organic Carbon concentration (TOC), which indicated 99% of oil phase retention. The emulsified mixture was characterized by optical microscopy, while the morphology and composition of the impregnated microporous tubes were analyzed by scanning electron microscopy (SEM). Quantification of the TOC values for the tube impregnated once at 600 degrees C showed the best demulsification performance, with the concentration on permeate smaller than 10 mg/L. The impregnated tube sintered once at 900 degrees C presented low carbon concentration (smaller than 20 mg/L), has the advantage of presenting the greatest trans-membrane flux in relation to the other microporous tube. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The effect of the addition of Cr and Nb on the microstructure and the electrochemical corrosion of the weldable, high-strength and stress corrosion cracking (SCC) resistant Al-5%Zn-1.67%Mg-0.23%Cu alloy (H) has been studied. Combined additions of the alloying elements, J (with Nb), L (with Cr) and O (with Cr and Nb) and different heat treatments, ST (cold-rolled), A (annealed), F (quenched), B (quenched and aged) and C (quenched in two steps and aged), to obtain different microstructures and hardness have been performed. To correlate the electrochemical corrosion with the microstructure of the specimens, corrosion potential (E(cor)) measurements in different chloride solutions were performed and optical microscopy, SEM, TEM and EDX were applied. In chloride solutions containing dissolved O-2 or H2O2, the present alloys were polarized up to the pitting attack. It was shown that the E(cor) measurements were very sensitive to the alloy composition and heat treatment, increasing in the order H < J < L < O < Al (for a given heat treatment) and F < A approximate to ST < B < C (for a given alloy). The MgZn2 precipitates of the annealed (A) and cold-rolled (ST) specimens were dissolved in chloride solutions containing oxidizing agents and pitting attack was shown to develop in the cavities where the precipitates were present. In the specimens B and C, the compositions of the precipitate free zones was found to be equal to that of the matrix solid solution and preferential intergranular attack was not evident, this being in agreement with their SCC resistance. The addition of Cr and Nb increased the pitting corrosion resistance. The effects of Cr and Nb were additive, that of Cr being predominant, either, in the E(cor) shift or in the increase in the pitting corrosion resistance.
Resumo:
The general principles of the mechanisms of heat transfer are well known, but knowledge of the transition between evaporative and non-evaporative heat loss by Holstein cows in field conditions must be improved, especially for low-latitude environments. With this aim 15 Holstein cows managed in open pasture were observed in a tropical region. The latent heat loss from the body surface of the animals was measured by means of a ventilated capsule, while convective heat transfer was estimated by the theory of convection from a horizontal cylinder and by the long-wave radiation exchange based on the Stefan-Boltzmann law. When the air temperature was between 10 and 36 degrees C the sensible heat transfer varied from 160 to -30 W m(-2), while the latent heat loss by cutaneous evaporation increased from 30 to 350 W m(-2). Heat loss by cutaneous evaporation accounted for 20-30% of the total heat loss when air temperatures ranged from 10 to 20 degrees C. At air temperatures > 30 degrees C cutaneous evaporation becomes the main avenue of heat loss, accounting for approximately 85% of the total heat loss, while the rest is lost by respiratory evaporation.
Resumo:
The hspA gene (XAC1151) from Xanthomonas axonopodis pv. citri encodes a protein of 158 amino acids that belongs to the small heat-shock protein ( sHSP) family of proteins. These proteins function as molecular chaperones by preventing protein aggregation. The protein was crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium phosphate. X-ray diffraction data were collected to 1.65 angstrom resolution using a synchrotron-radiation source. The crystal belongs to the rhombohedral space group R3, with unit-cell parameters a = b = 128.7, c = 55.3 angstrom. The crystal structure was solved by molecular-replacement methods. Structure refinement is in progress.
Resumo:
For the configuration optimization of plate heat exchangers (PHEs), the mathematical models for heat transfer and pressure drop must be valid for a wide range of operational conditions of all configurations of the exchanger or the design results may be compromised. In this investigation, the thermal model of a PHE is adjusted to fit experimental data obtained from non-Newtonian heat transfer for eight different configurations, using carboxymethylcellulose solutions (CMC) as test fluid. Although it is possible to successfully adjust the model parameters, Newtonian and non-Newtonian heat transfer cannot be represented by a single generalized correlation. In addition, the specific heat, thermal conductivity and power-law rheological parameters of CMC solutions were correlated with temperature, over a range compatible with a continuous pasteurization process.
Resumo:
1. The synthesis of heat shock protein 70 (Hsp70) mRNA and the expression of Hsp70 in the liver of broiler chickens submitted to acute heat stress (35 degrees C for 5 h) was investigated.2. Hsp70 expression was detected by SDS-PAGE and Western blot analysis using a polyclonal antiserum against Hsp70 of Blastocladiella emersonii. The specific signal of Hsp70 mRNA was analysed by Northern blot using as probe a Hsp70 cDNA of B. emersonii.3. An increase in the amount of Hsp70 was detected from the first up to the fifth hour of acute heat exposure. This increase in the amount of Hsp70 was accompanied by an increase in Hsp70 mRNA which peaked at 3 h.4. This study shows that the heat induced increase in Hsp70 mRNA and protein in broiler liver, in vivo, are time dependent, similar to that in mammals.
Resumo:
This article presents a thermoeconomic analysis of cogeneration plants, applied as a rational technique to produce electric power and saturated steam. The aim of this new methodology is the minimum Exergetic Production Cost (EPC), based on the Second Law of Thermodynamics. The variables selected for the optimization are the pressure and the temperature of the steam leaving the boiler in the case of using steam turbine, and the pressure ratio, turbine exhaust temperature and mass flow in the case of using gas turbines. The equations for calculating the capital costs of the components and products are formulated as a function of these decision variables. An application of the method using real data of a multinational chemical industry located in São Paulo state is presented. The conditions which establish the minimum cost are presented as final output. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of the present study was to investigate the effect of thermal conditioning, (through exposure to heat stress), during pre-hatch development on some physiological responses of post-hatch broilers to a post-natal heat stress challenge. Exposure to heat stress at this stage, we hope, may possibly induce epigenetic heat adaptation. Incubating eggs were exposed to temperature of 39.0degreesC for 2 h from Day 13 to 17 of incubation. At 33, 35, 37, 39, 41 and 43 d of age, the broilers hatched from these eggs were housed individually in open-circuit respiration cells. The climatic chambers were set to 22degreesC and increased to 30degreesC for 4 h. O-2 consumption and CO2 production of each chicken was monitored continuously in order to calculate the heat production. Blood samples were obtained before and during the 4 h heat stress. Thermal conditioning during incubation did not affect the plasma T-4, corticosterone, glucose, uric acid and CK concentrations. Temperature challenge, decreased plasma T-3 of broilers of both groups but the decrease was greater in pre-conditioned broilers compared with controls. A similar trend was observed for triglycerides. These changes did not affect total heat production. Since decreased T3 and triglyceride levels are part of the mechanisms for thermoregulation, these suggest that thermal conditioning during incubation can improve the broiler chicken capability for thermotolerance at later post-hatch age. (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Cr-doped xerogels were obtained by sol-gel process from the acid-catalyzed and ultrasound-stimulated hydrolysis of tetraethoxysilane (TEOS) with addition of CrCl3.6H(2)O in water solution during the liquid step of the process. The gels were aged immersed in different pH solutions for about 30 days, after that they were allowed to dry. The samples were annealed at temperatures ranging from 40 to 600degreesC and analyzed by UV-visible absorption spectroscopy. Cr3+ is the preferable oxidation state of the chromium ion in the gels annealed up to 250-300degreesC, in the case of aging in solutions of pH=5 and 11. A high UV absorption below similar to320 nm, due to the host gel, and different absorption bands, depending on the temperature, due to the chromium ion were observed in the xerogels at temperatures below similar to250degreesC, in the case of aging in solutions of pH=1 and 2. These absorption bands have not been assigned. Above 300degreesC up to 600degreesC, Cr5+, and possibly Cr6+, are the preferable oxidation states of the chromium ion independent of the pH of the aging solution, so the xerogels turn to a yellowish appearance in all cases.
Resumo:
The accurate determination of thermophysical properties of milk is very important for design, simulation, optimization, and control of food processing such as evaporation, heat exchanging, spray drying, and so forth. Generally, polynomial methods are used for prediction of these properties based on empirical correlation to experimental data. Artificial neural networks are better Suited for processing noisy and extensive knowledge indexing. This article proposed the application of neural networks for prediction of specific heat, thermal conductivity, and density of milk with temperature ranged from 2.0 to 71.0degreesC, 72.0 to 92.0% of water content (w/w), and 1.350 to 7.822% of fat content (w/w). Artificial neural networks presented a better prediction capability of specific heat, thermal conductivity, and density of milk than polynomial modeling. It showed a reasonable alternative to empirical modeling for thermophysical properties of foods.