992 resultados para Fiber reinforcement
Resumo:
SPIE
Resumo:
SPIE
Resumo:
A kind of optical pH sensor was demonstrated that is based on a pH-sensitive fluorescence dye-doped (eosin) cellulose acetate (CA) thin-film modified microstructured polymer optical fiber (MPOF). It was obtained by directly inhaling an eosin-CA-acetic acid mixed solution into array holes in a MPOF and then removing the solvent (acetic acid). The sensing film showed different fluorescence intensities to different pH solutions in a pH range of 2.5-4.5. Furthermore, the pH response range could be tailored through doping a surfactant, hexadecyl trimethyl ammonium bromide (CTAB), in the sensing film. (c) 2007 Optical Society of America.
Resumo:
Ultrahigh-resolution fiber-optic image guides-fused image fiber, faceplate, and taper-were fabricated by using microstructured polymer optical fiber (MPOF) preforms composed of two polymers: polymethylmethacrylate and polystyrene. The pixel diameter in the resultant MPOF-based image guides was as small as 3 mu m. The imaging capabilities of these types of fiber-optic elements were demonstrated. (C) 2009 Optical Society of America
Resumo:
By optimizing glass composition and using a multistage dehydration process, a ternary 80TeO(2)-10ZnO-10Na(2)O glass is obtained that shows excellent transparency in the wavelength range from 0.38 mu m up to 6.10 mu m. Based on this optimized composition, we report on the fabrication of a single-mode solid-core tellurite glass fiber with large mode area of 103 mu m(2) and low loss of 0.24 similar to 0.7 dB/m at 1550 nm. By using the continuous-wave self-phase modulation method, the non-resonant nonlinear refractive index n(2) and the effective nonlinear parameter gamma of this made tellurite glass fiber were estimated to be 3.8x10(-1)9 m(2)/W and 10.6 W-1.m(-1) at 1550 nm, respectively. (C) 2009 Optical Society of America
Tellurium enhanced non-resonant third-order optical nonlinearity in a germano-silicate optical fiber
Resumo:
碲掺杂的高非线性石英光纤
Resumo:
银纳米晶体掺杂的高非线性石英光纤的全光转换应用
Resumo:
The lasing in an end-pumped gain guided index-antiguided (GG-IAG) Yb3+-doped silicate glass fiber with a 200 mu m diameter core is demonstrated. Laser beams with similar beam propagation factors M (2) and mode field diameters W (0) (> 160 mu m) were observed at the output end of the GG-IAG fibers under different pump powers, which indicated that single mode behavior and excellent beam quality were achieved during propagation. Furthermore, the laser amplifier characteristics in the present Yb3+-doped GG-IAG fiber were also evaluated.