692 resultados para Fiber laser


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have theoretically and experimentally designed and demonstrated an all-fiber polarization interference filter (AFPIF), which is formed by a polarization-maintaining (PM) fiber cavity structure utilizing two 45° tilted fiber gratings (45°-TFGs) inscribed by UV laser on the PM fiber. Such a filter could generate modulated transmission of linear polarization status. It has been revealed that the modulation depth of the transmission depends on the coupling angle between the 45°-TFGs and the PM fiber cavity. When the two 45°-TFGs in PM fiber are oriented at 45° to the principal axis of the PM fiber cavity, the maximum modulation depth is achievable. Due to the thermal effect on birefringence of the PM fiber, the AFPIF can be tuned over a broad wavelength range just by simple thermal tuning of the cavity. The experiment results show that the temperature tuning sensitivity is proportional to the length ratio of the PM fiber cavity under heating. For 18 and 40 cm long cavities with 6 cm part under heating, the thermal tuning sensitivities are 0.616 and 0.31 nm/° C, respectively, which are almost two orders of magnitude higher than normal fiber Bragg gratings. © 1983-2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerical modeling of cascade erbium-doped and holmium-doped fluoride fiber lasers is presented. Fiber lengths were optimized for cascade lasers that had fixed or free-running wavelengths using all known spectroscopic parameters. The performance of the cascade laser was tested against dopant concentration, energy transfer process, heat generation, output coupling, and pump schemes. The results suggest that the slope efficiencies and thresholds for both transitions increase with increasing Ho3+ or Er3+ concentration with the slope efficiency stabilizing after 1 mol% rare earth doping. The heat generation in the Ho3+-based system is lower compared to the Er 3+-based system at low dopant concentration as a result of the lower rates of multiphonon relaxation. Decreasing the output coupling for the upper (∼3 μm) transition decreases the threshold of the lower transition and the upper transition benefits from decreasing the output coupling for the lower transition for both cascade systems. The highest slope efficiency was achieved under counter-propagating pump conditions. Saturation of the output power occurs at comparatively higher pump power with dilute Er3+ doping compared with heavier doping. Overall, we show that the cascade Ho3+ -doped fluoride laser is the best candidate for high power output because of its higher slope efficiency and lower temperature excursion of the core and no saturation of the output. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A polymer-core/silica-cladding hybrid optical fiber is implemented by filling a capillary with UV-curable epoxy and a following UV-laser scanning exposure. A fiber Bragg grating is successfully inscribed in parallel using a phase mask. The experimental results show a reduced thermal response for the FBG and a theoretical analysis for such a hybrid optical fiber is performed which corroborates existing of a turning temperature for minimized thermal response. © 2014 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long Period Gratings (LPG) in standard fiber have been manufactured with a sharply focused near infrared (NIR) femtosecond laser beam. Polarization splitting of the attenuation bands is strongly dependent upon the inscription power.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate the development of femtosecond laser inscribed superstructure fiber gratings (fsSFG) in silica optical fibre. We utilise a single step process, to inscribe low loss and polarisation independent, sampled gratings in optical fibres using the point by point femtosecond laser inscription method. Our approach results in a controlled modulated index change with complete suppression of any overlapping LPG structure leading to highly symmetric superstructure spectra, with the grating reflection well within the Fourier design limit. We also solve Maxwell's equations and calculate the back reflection spectrum using the bidirectional beam propagation method (BiBPM). Experimental results validate our numerical analysis and the estimation of inscription parameters such as ac index modulation, wavelength and the relative peak strength. We also explore how changes in the grating's period influence the reflection spectrum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fiber Bragg gratings can be used for monitoring different parameters in a wide variety of materials and constructions. The interrogation of fiber Bragg gratings traditionally consists of an expensive and spacious peak tracking or spectrum analyzing unit which needs to be deployed outside the monitored structure. We present a dynamic low-cost interrogation system for fiber Bragg gratings which can be integrated with the fiber itself, limiting the fragile optical in- and outcoupling interfaces and providing a compact, unobtrusive driving and read-out unit. The reported system is based on an embedded Vertical Cavity Surface Emitting Laser (VCSEL) which is tuned dynamically at 1 kHz and an embedded photodiode. Fiber coupling is provided through a dedicated 45° micromirror yielding a 90° in-the-plane coupling and limiting the total thickness of the fiber coupled optoelectronic package to 550 µm. The red-shift of the VCSEL wavelength is providing a full reconstruction of the spectrum with a range of 2.5 nm. A few-mode fiber with fiber Bragg gratings at 850 nm is used to prove the feasibility of this low-cost and ultra-compact interrogation approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Environmentally stable high-power erbium fiber soliton lasers are constructed by Kerr or carrier-type mode locking. We obtain high-energy pulses by using relatively short fiber lengths and providing large amounts of negative dispersion with chirped fiber Bragg gratings. The pulse energies and widths generated with both types of soliton laser are found to scale with the square root of the cavity dispersion. Kerr mode locking requires pulses with an approximately three times higher nonlinear phase shift in the cavity than carrier mode locking, which leads to the generation of slightly shorter pulses with as much as seven times higher pulse energies at the mode-locking threshold.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate a great variability of single-pulse (with only one pulse/wave-packet traveling along the cavity) generation regimes in fiber lasers passively mode-locked by non-linear polarization evolution (NPE) effect. Combining extensive numerical modeling and experimental studies, we identify multiple very distinct lasing regimes with a rich variety of dynamic behavior and a remarkably broad spread of key parameters (by an order of magnitude and more) of the generated pulses. Such a broad range of variability of possible lasing regimes necessitates developing techniques for control/adjustment of such key pulse parameters as duration, radiation spectrum, and the shape of the auto-correlation function. From a practical view point, availability of pulses/wave-packets with such different characteristics from the same laser makes it imperative to develop variability-aware designs with control techniques and methods to select appropriate application-oriented regimes. © 2014 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many applications of high-power laser diodes demand tight focusing. This is often not possible due to the multimode nature of semiconductor laser radiation possessing beam propagation parameter M2 values in double-digits. We propose a method of 'interference' superfocusing of high-M2 diode laser beams with a technique developed for the generation of Bessel beams based on the employment of an axicon fabricated on the tip of a 100 μm diameter optical fiber with highprecision direct laser writing. Using axicons with apex angle 140º and rounded tip area as small as 10 μm diameter, we demonstrate 2-4 μm diameter focused laser 'needle' beams with approximately 20 μm propagation length generated from multimode diode laser with beam propagation parameter M2=18 and emission wavelength of 960 nm. This is a few-fold reduction compared to the minimal focal spot size of 11 μm that could be achieved if focused by an 'ideal' lens of unity numerical aperture. The same technique using a 160º axicon allowed us to demonstrate few-μm-wide laser 'needle' beams with nearly 100 μm propagation length with which to demonstrate optical trapping of 5-6 μm rat blood red cells in a water-heparin solution. Our results indicate the good potential of superfocused diode laser beams for applications relating to optical trapping and manipulation of microscopic objects including living biological objects with aspirations towards subsequent novel lab-on-chip configurations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a phase-shifted fiber Bragg grating is proposed for strain sensing at extreme temperatures. The grating structure is written in bare standard single mode fiber, using the point-by-point femtosecond laser technique. Strain measurements are performed at temperatures ranging from room temperature up to 900°C. By subjecting the sensor to such extreme conditions, the wavelength of the grating increases. © 2014 OSA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The focusing of multimode laser diode beams is probably the most significant problem that hinders the expansion of the high-power semiconductor lasers in many spatially-demanding applications. Generally, the 'quality' of laser beams is characterized by so-called 'beam propagation parameter' M2, which is defined as the ratio of the divergence of the laser beam to that of a diffraction-limited counterpart. Therefore, M2 determines the ratio of the beam focal-spot size to that of the 'ideal' Gaussian beam focused by the same optical system. Typically, M2 takes the value of 20-50 for high-power broad-stripe laser diodes thus making the focal-spot 1-2 orders of magnitude larger than the diffraction limit. The idea of 'superfocusing' for high-M2 beams relies on a technique developed for the generation of Bessel beams from laser diodes using a cone-shaped lens (axicon). With traditional focusing of multimode radiation, different curvatures of the wavefronts of the various constituent modes lead to a shift of their focal points along the optical axis that in turn implies larger focal-spot sizes with correspondingly increased values of M2. In contrast, the generation of a Bessel-type beam with an axicon relies on 'self-interference' of each mode thus eliminating the underlying reason for an increase in the focal-spot size. For an experimental demonstration of the proposed technique, we used a fiber-coupled laser diode with M2 below 20 and an emission wavelength in ~1μm range. Utilization of the axicons with apex angle of 140deg, made by direct laser writing on a fiber tip, enabled the demonstration of an order of magnitude decrease of the focal-spot size compared to that achievable using an 'ideal' lens of unity numerical aperture. © 2014 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a high-resolution optical time domain reflectometry (OTDR) based on an all-fiber supercontinuum source. The source simply consists of a laser with moderate power and a section of fiber which has a zero dispersion wavelength near the laser's central wavelength. Spectrum and time domain properties of the source are investigated, showing that the source has great capability in nonlinear optics, such as correlation OTDR. We analyze one of the key factors limiting the operational range of such an OTDR, i.e., sampling time. Finally, we experimentally demonstrate a correlation OTDR with 25km sensing range and 5.3cm spatial resolution, as a verification of theoretical analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fabrication and characterization of a UVinscribed fiber Bragg grating (FBG) with a micro-slot liquid core is presented. Femtosecond (fs) laser patterning/chemical etching technique was employed to engrave a micro-slot with dimensions of 5.74 μm(h) × 125 μm(w) × 1388.72 μm(l) across the whole grating. The device has been evaluated for refractive index (RI) and temperature sensitivities and exhibited distinctive thermal response and RI sensitivity beyond the detection limit of reported fiber gratings. This structure has not just been RI sensitive, but also maintained the robustness comparing with the bare core FBGs and long-period gratings with the partial cladding etched off. © 2012 Optical Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a linear response optical refractive index (RI) sensor, which is fabricated based on a micro-channel created within a Fabry Perot (F-P) cavity by chemical etching assisted by femtosecond laser inscription. The experimental results show the F-P resonance peak has a linear response with the RI of medium and the measuring sensitivity is proportion to the length of micro-channel. The sensor with 5 μm -long micro-channel exhibited an RI sensitivity of 1.15nm/RIU and this sensitivity increased to 9.08nm/RIU when widening the micro-channel to 35μm. Furthermore, such micro-channel FP sensors show a much broader RI sensing dynamic range (from 1.3 to 1.7) than other reported optical fiber sensors. © 2012 SPIE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel method of fiber Bragg grating design based on tailored group delay is presented. The method leads to designs that are superior to the previously reported results. © OSA 2012.