990 resultados para Female rat
Resumo:
The straightforward anatomical organisation of the developing and mature rat spinal cord was used to determine and interpret the time of appearance and expression patterns of microtubule-associated proteins (MAP) 1b and 2. Immunoblots revealed the presence of MAP1b and 2 in the early embryonic rat spinal cord and confirmed the specificity of the used anti-MAP mouse monoclonal antibodies. The immunocytochemical data demonstrated a rostral-to-caudal and ventral-to-dorsal gradient in the expression of MAP1b/2 within the developing spinal cord. In the matrix layer, MAP1b was found in a distinct radial pattern distributed between the membrana limitans interna and externa between embryonal day (E)12 and E15. Immunostaining for vimentin revealed that this MAP1b pattern was morphologically and topographically different from the radial glial pattern which was present in the matrix layer between E13 and E19. The ventral-to-dorsal developmental gradient of the MAP1b staining in the spinal cord matrix layer indicates a close involvement of MAP1b either in the organisation of the microtubules in the cytoplasmatic extensions of the proliferating neuroblasts or neuroblast mitosis. MAP2 could not be detected in the developing matrix layer. In the mantle and marginal layer, MAP1b was abundantly present between E12 and postnatal day (P)0. After birth, the staining intensity for MAP1b gradually decreased in both layers towards a faint appearance at maturity. The distribution patterns suggest an involvement of MAP1b in the maturation of the motor neurons, the contralaterally and ipsilaterally projecting axons and the ascending and descending long axons of the rat spinal cord. MAP2 was present in the spinal cord grey matter between E12 and maturity, which reflects a role for MAP2 in the development as well as in the maintenance of microtubules. The present description of the expression patterns of MAP1b and 2 in the developing spinal cord suggests important roles of the two proteins in various morphogenetic events. The findings may serve as the basis for future studies on the function of MAP1b and 2 in the development of the central nervous system.
Resumo:
Pelvic floor anatomy is complex and its three-dimensional organization is often difficult to understand for both undergrad- uate and postgraduate students. Here, we focused on several critical points that need to be considered when teaching the perineum. We have to deal with a mixed population of students and with a variety of interest. Yet, a perfect knowledge of the pelvic floor is the basis for any gynecologist and for any surgical intervention. Our objectives are several-fold; i) to estab- lish the objectives and the best way of teaching, ii) to identify and localize areas in the female pelvic floor that are suscepti- ble to generate problems in understanding the three-dimensional organization, iii) to create novel approaches by respecting the anatomical surroundings, and iv) prospectively, to identify elements that may create problems during surgery i.e. to have a closer look at nerve trajectories and on compression sites that may cause neuralgia or postoperative pain. A feedback from students concludes that they have difficulties to assimilate this much information, especially the different imaging tech- niques. Eventually, this will lead to a severe selection of what has to be taught and included in lectures or practicals. Another consequence is that more time to study prosected pelves needs to be given.
Resumo:
A series of studies in schizophrenic patients report a decrease of glutathione (GSH) in prefrontal cortex (PFC) and cerebrospinal fluid, a decrease in mRNA levels for two GSH synthesizing enzymes and a deficit in parvalbumin (PV) expression in a subclass of GABA neurons in PFC. GSH is an important redox regulator, and its deficit could be responsible for cortical anomalies, particularly in regions rich in dopamine innervation. We tested in an animal model if redox imbalance (GSH deficit and excess extracellular dopamine) during postnatal development would affect PV-expressing neurons. Three populations of interneurons immunolabeled for calcium-binding proteins were analyzed quantitatively in 16-day-old rat brain sections. Treated rats showed specific reduction in parvalbumin immunoreactivity in the anterior cingulate cortex, but not for calbindin and calretinin. These results provide experimental evidence for the critical role of redox regulation in cortical development and validate this animal model used in schizophrenia research.
Resumo:
Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.
Resumo:
Ornament expression fluctuates with age in many organisms. Whether these changes are adaptively plastic is poorly known. In order to understand the ultimate function of melanin-based ornaments, we studied their within-individual fluctuations and their covariation with fitness-related traits. In barn owls (Tyto alba), individuals vary from reddish-brown pheomelanic to white and from immaculate to marked with black eumelanic spots, males being less reddish and less spotted than females. During the first molt, both sexes became less pheomelanic, females displayed larger spots and males fewer spots, but the extent of these changes was not associated with reproduction. At subsequent molts, intra-individual changes in melanin-based traits covaried with simultaneous reproduction changes. Adult females bred earlier in the season and laid larger eggs when they became scattered with larger spots, while adults of both sexes produced larger broods when they became whiter. These results suggest that the production of melanin pigments and fitness-related life history traits are concomitantly regulated in a sex-specific way.
Resumo:
OBJECTIVES: To investigate the development of the ureterovesical junction in rats. METHODS: A total of 110 albino rats (50 prenatal and 60 newborn) with a gestation of 21 days were studied at the age of 17 days after conception until 5 days after birth. The lower urinary tract was microdissected. Microphotography (110 animals), histologic examination (44 animals), and scanning electron microscopy (66 animals) of the ureterovesical junction were performed. Urea and creatinine from the amniotic fluid of 20 fetuses and from the urine of 10 neonates were measured. RESULTS: At day 17 after conception, separate penetration of the mesonephric duct and ureter into the wall of the urogenital sinus was observed. Continuity between the lumen of the ureter and the urogenital sinus was established on day 19 after conception. The straight passage of the intramural ureter into the urogenital sinus at day 17 after conception changed to the definitive L-shape with a vertical entry into the bladder on day 5 after birth. In the distal ureter, the change of the mesenchymal tissue into immature smooth muscle was first observed at birth, and the muscle became mature on the fifth postnatal day. At birth, Waldeyer's sheath was recognized. The creatinine and urea levels were stable prenatally (average 22.4 micromol/L and 6.88 mmol/L, respectively) and rose significantly postnatally (average 133 micromol/L and 32.65 mmol/L, respectively). CONCLUSIONS: The attachment of the ureter to the urogenital sinus and later to the bladder, the modification of its passage, and its mobility within Waldeyer's sheath may be essential in preventing vesicoureteral reflux. The production of urine and its flow does not seem to be the trigger of ureteral smooth muscle formation.
Resumo:
Serum-free aggregating cell cultures of fetal rat telencephalon were examined by a combined biochemical and double-labeling immunocytochemical study for the developmental expression of glial fibrillary acidic protein (GFAP) and glutamine synthetase (GS). It was found that these two astroglial markers are co-expressed at different developmental stages in vitro. During the phase of cellular maturation (i.e. between days 14 and 34), GFAP levels and GS activity increase rapidly and in parallel. At the same time, the number of immunoreactive cells increase while the long and thick processes staining in early cultures gradually disappear. The present results demonstrate that in this particular cell culture system only one type of astrocytes develops which expresses both GFAP and GS and which attains a relatively high degree of maturation.
Resumo:
The hypothesis that extravagant ornaments signal parasite resistance has received support in several species for ornamented males but more rarely for ornamented females. However, recent theories have proposed that females should often be under sexual selection, and therefore females may signal the heritable capacity to resist parasites. We investigated this hypothesis in the socially monogamous barn owl, Tyto alba, in which females exhibit on average more and larger black spots on the plumage than males, and in which males were suggested to choose a mate with respect to female plumage spottiness. We hypothesized that the proportion of the plumage surface covered by black spots signals parasite resistance. In line with this hypothesis, we found that the ectoparasitic fly, Carnus hemapterus, was less abundant on young raised by more heavily spotted females and those flies were less fecund. In an experiment, where entire clutches were cross-fostered between nests, we found that the fecundity of the flies collected on nestlings was negatively correlated with the genetic mother's plumage spottiness. These results suggest that the ability to resist parasites covaries with the extent of female plumage spottiness. Among females collected dead along roads, those with a lot of black spots had a small bursa of Fabricius. Given that parasites bigger the development of this immune organ, this observation further suggests that more spotted females are usually less parasitized. The same analyses performed on male plumage spottiness all provided non-significant results. To our knowledge, this study is the first one showing that a heritable secondary sexual characteristics displayed by females reflects parasite resistance.
Resumo:
The membrane-associated protein SCG10 is expressed specifically by neuronal cells. Recent experiments have suggested that it promotes neurite outgrowth by increasing microtubule dynamics in growth cones. SCG10 is related to the ubiquitous but neuron-enriched cytosolic protein stathmin. To better understand the role played by SCG10 and stathmin in vivo, we have analyzed the expression and localization of these proteins in both the olfactory epithelium and the olfactory bulb in developing and adult rats, as well as in adult bulbectomized rats. The olfactory epithelium is exceptional in that olfactory receptor neurons constantly regenerate and reinnervate the olfactory bulb throughout animal life-span. SCG10 and stathmin expression in the olfactory receptor neurons was found to be regulated during embryonic and postnatal development and to correlate with neuronal maturation. Whereas SCG10 expression was restricted to immature olfactory receptor neurons (GAP-43-positive, olfactory marker protein-negative), stathmin was also expressed by the basal cells. In the olfactory bulb of postnatal and adult rats, a moderate to strong SCG10 immunoreactivity was present in the olfactory nerve layer, whereas no labeling was detected in the glomerular layer. Olfactory glomeruli also showed no apparent immunoreactivity for several cytoskeletal proteins such as tubulin and microtubule-associated proteins. In unilaterally bulbectomized rats, SCG10 and stathmin were seen to be up-regulated in the regenerating olfactory epithelium at postsurgery stages corresponding to olfactory axon regeneration. Our data strongly suggest that, in vivo, both SCG10 and stathmin may play a role in axonal outgrowth during ontogenesis as well as during axonal regeneration.
Resumo:
A description is given of a female sand fly (Diptera: Psychodidae - Phlebotominae) similar to Brunptomyia spinosipes (Floch & Abonnenc, 1943).
Resumo:
PURPOSE: Glucocorticoids are used to treat macular edema, although the mechanisms underlying this effect remain largely unknown. The authors have evaluated in the normal and endotoxin-induced uveitis (EIU) rats, the effects of dexamethasone (dex) and triamcinolone acetonide (TA) on potassium channel Kir4.1 and aquaporin-4 (AQP4), the two main retinal Müller glial (RMG) channels controlling retinal fluid movement. METHODS: Clinical as well as relatively low doses of dex and TA were injected in the vitreous of normal rats to evaluate their influence on Kir4.1 and AQP4 expression 24 hours later. The dose-dependent effects of the two glucocorticoids were investigated using rat neuroretinal organotypic cultures. EIU was induced by footpad lipopolysaccharide injection, without or with 100 nM intraocular dex or TA. Glucocorticoid receptor and channel expression levels were measured by quantitative PCR, Western blot, and immunohistochemistry. RESULTS: The authors found that dex and TA exert distinct and specific channel regulations at 24 hours after intravitreous injection. Dex selectively upregulated Kir4.1 (not AQP4) in healthy and inflamed retinas, whereas TA induced AQP4 (not Kir4.1) downregulation in normal retina and upregulation in EIU. The lower concentration (100 nM) efficiently regulated the channels. Moreover, in EIU, an inflammatory condition, the glucocorticoid receptor was downregulated in the retina, which was prevented by intravitreous injections of the low concentration of dex or TA. CONCLUSIONS: The results show that dex and TA are far from being equivalent to modulate RMG channels. Furthermore, the authors suggest that low doses of glucocorticoids may have antiedematous effects on the retina with reduced toxicity.
Resumo:
Cellular responses to LPS, the major lipid component of the outer membrane of Gram-negative bacteria, are enhanced markedly by the LPS-binding protein (LBP), a plasma protein that transfers LPS to the cell surface CD14 present on cells of the myeloid lineage. LBP has been shown previously to potentiate the host response to LPS. However, experiments performed in mice with a disruption of the LBP gene have yielded discordant results. Whereas one study showed that LBP knockout mice were resistant to endotoxemia, another study did not confirm an important role for LBP in the response of mice challenged in vivo with low doses of LPS. Consequently, we generated rat mAbs to murine LBP to investigate further the contribution of LBP in experimental endotoxemia. Three classes of mAbs were obtained. Class 1 mAbs blocked the binding of LPS to LBP; class 2 mAbs blocked the binding of LPS/LBP complexes to CD14; class 3 mAbs bound LBP but did not suppress LBP activity. In vivo, class 1 and class 2 mAbs suppressed LPS-induced TNF production and protected mice from lethal endotoxemia. These results show that the neutralization of LBP accomplished by blocking either the binding of LPS to LBP or the binding of LPS/LBP complexes to CD14 protects the host from LPS-induced toxicity, confirming that LBP is a critical component of innate immunity.
Resumo:
OBJECTIVE: To assess satisfaction among female patients of a youth friendly clinic and to determine with which factors this was associated. METHODS: A cross-sectional survey was conducted in an adolescent clinic in Lausanne, Switzerland, between March and May 2008. All female patients who had made at least one previous visit were eligible. Three hundred and eleven patients aged 12-22 years were included. We performed bivariate analysis to compare satisfied and non-satisfied patients and constructed a log-linear model. RESULTS: Ninety-four percent of patients were satisfied. Satisfied female adolescents were significantly more likely to feel that their complaints were heard, that the caregiver understood their problems, to have no change of physician, to have received the correct treatment/help and to follow the caregiver's advice. The log-linear model highlighted four factors directly linked with patient satisfaction: outcome of care, continuity of care, adherence to treatment and the feeling of being understood. CONCLUSIONS: The main point for female adolescent patient satisfaction lies in a long term, trustworthy relationship with their caregiver. Confidentiality and accessibility were secondary for our patients.
Resumo:
We studied by sanning electron microscopy the number, types, structure and distribution of the antennal sensilla of the medical important ceratopogonid Culicoides paraensis (Goeldi). There are about 174 sense organs on the antenmal flagellum which are classified as sensilla chaetica; sharp-tipped and blunt-tipped (type I and II) sensilla trichodea; sensilla basiconica; sensilla coeloconica; sensilla ampullacea and styloconic-type sensilla. The role of antennal sensory organs are discussed regarding the host preference of the biting midges.