937 resultados para FREEZE-DRYING MICROSCOPY
Resumo:
This study aimed at contributing to the development of new foodstuffs made by soursop pulp powder obtained by spraydrying. Different concentrations of maltodextrin DE 20 (15, 30, and 45%) were added to commercial soursop pulp, which was dehydrated afterwards. The following analyses were carried out: water activity, moisture, pH, soluble solids, acidity, ascorbic acid, hygroscopicity, degree of caking, and rehydration time. The results obtained for the three powder treatments (15, 30 and 45% of maltodextrin) were, respectectively: water activity (0.19a±0.00; 0.20a±0.00; 0.18a±0.01); moisture (1.17c±0.12; 1.47b±0.05; 1.82a±0.06); pH (3.75a±0.05; 3.73a±0.06; 3.70a±0.03); soluble solids (89.67a±0.00; 89.84a±0.00; 90.00a±0.06); acidity (3.01a±0.02; 1.91b±0.03; 1.24c±0.03); ascorbic acid (18.90a±0.00; 14.48b±0.00; 11.26b±0.78); hygroscopicity (5.93a±0.40; 3.82b±0.16; 3.28b±0.38); degree of caking (78.36a±2.86; 35.38b±6.07; 24.77b4.89), and rehydration time (02.03a±0.46; 01.16ab±0.50; 0.59b±0.30). The soursop powders with 30 and 45% of maltodextrin had few significant differences in terms of physicochemical and hygroscopic characteristics, which allow us to consider the percentage of 30% of maltodextrin, in this study, as the best percentage for soursop pulp atomization.
Resumo:
AbstractOptimization of microwave drying conditions of Luvhele and Mabonde banana varieties were studied using response surface methodology. The drying was performed using a central composite rotatable design for two variables: microwave power level (100, 200 and 300 W) and drying time (40, 26, and 12 min.) for Luvhele; (100, 200 and 300 W) and (42, 27, and 12 min) for Mabonde. The colour and texture (hardness) data were analyzed using ANOVA and regression analysis. The fitness of the models obtained was good as the lack of fit for each of the models was not significant. The coefficient of determination R2 of the models was relatively high, hence the models obtained for the responses were adequate and acceptable. Drying conditions of 178.76 W, 12 min. drying time were found optimum for product quality at a desirability of 0.91 for Luvhele; while 127.67 W, 12 min. with a desirability of 0.86 was predicted for Mabonde. The result of this study could be used as a standard for microwave processing of Luvhele and Mabondebanana varieties.
Resumo:
AbstractMaize is considered a source of carotenoids; however, these compounds are highly unstable, degraded by high temperatures, exposure to light and presence of oxygen. The objective of this work was to evaluate the influence of the moisture and type of drying applied to grains on the level of carotenoids in yellow maize. The experiment was conducted in a completely randomized design (2 × 4 factorial), two levels of initial moisture at the harvest (22 and 19%) and three types of drying (in the sun; in the shade and in a dryer) and control (no drying). The samples of grains after drying with 12% of final moisture were analyzed by concentration of total carotenoids, carotenes (α-carotene + β-carotene), monohydroxilated carotenoids (β-cryptoxanthin), and xanthophylls (lutein + zeaxanthin). Initial moisture, type of drying and the interaction between moisture versus drying influence (p≤0.05) the levels of carotenoids in grains. This is the first report about the drying conditions and harvest’s initial moisture as influence on the profile and content of carotenoids in maize grains. Based on the results, this work suggested that the harvest be carried out preferably when the grains present 22% humidity, with drying in a dryer or in shade for further use or storage.
Resumo:
Abstract The present study aimed at investigating the influences of drying air temperature and flow rate on energy parameters and dehydration behaviour of apple slices. For this purpose, apple slices were dried in a convective dryer at air temperatures of 50, 60 and 70 °C, and air velocities of 1, 1.5 and 2 m s–1. Dehydration rate increased as the air temperature and flow rate increased from 50 to 70 °C and 1 to 2 m s–1, respectively. The effective moisture diffusivity was determined to be in the range of 6.75×10–10-1.28×10–9 m2 s–1. Results of data analysis showed that the maximum energy consumption (23.94 kW h) belonged to 50 °C and 2 m s–1 and the minimum (13.89 kW h) belonged to 70 °C and 1 m s–1 treatment. Energy efficiency values were in the range of 2.87-9.11%. Moreover, the results indicated that any increment in the air temperature increases thermal and drying efficiencies while any increment in the air flow rate decreases both of them.
Resumo:
Abstract Apricot is one of the fruits dried by using different methods, such as sun, convective or microwave drying. The effects of drying methods on the components of this fruit differ depending upon the temperature or time parameters. In this research, the impacts of convective, microwave and microwave–convective drying techniques on color, β-carotene, minerals and antioxidant activity of apricots were investigated. The color values (L*, b*,ΔEab, h° and C*ab) of dried fruit were decreased, while the a* values increased. Compared with a fresh sample, the dried apricots showed a 1.4-3.9-fold proportional increase in β-carotene based on the increment of dry matter. The samples dried at high temperature and microwave levels, at 75 °C+90 watt and 75 °C+160 watt, showed lower antioxidant activity. Of the different drying treatments, the microwave-convective method (50 °C+160 watt) obtained a higher β-carotene content while maintaining antioxidant activity with a short drying time.
Resumo:
Abstract In order to take full advantage of Tenebrio molitor larvae (yellow mealworm) resources, the supercritical CO2 fluid freeze-dried powder of T. molitor larvae (fdTML) extraction on the immune systems of mice was carried out. The results about the effects of supercritical CO2 fluid fdTML extraction on carbon expurgation and phagocytosis of peritoneal macrophages experiments of mice indicated that the fdTML extraction enhanced observably carbon expurgatory index, phagocytic rate and phagocytic index. The fdTML extraction could stimulate response of delayed hypersensitivity. The proliferation of ConA-induced mitogenic reponse for spleen lymphocyte was also increased. The amount of hemolytic antibody in mice serum increased compared with those of the control group mice. The half of hemolysis values in serum of treated mice increased compared to the control group. Furthermore, serum NO content in all treatment groups was higher than that of the control group whereas acid phosphatase and alkaline phosphatase activity was only significantly higher relative to the control group. Our findings suggest that supercritical CO2 fluid the fdTML extraction has potential as a health food supplement.
Resumo:
Aims: The aim of this work was to assess the ultrastructural changes, cellular proliferation, and the biofilm formation ability of F. nucleatum as defense mechanisms against the effect of HNP-1. Materials and methods: The type strain of F. nucleatum (ssp. nucleatum ATCC 25586) and two clinical strains (ssp. polymorphum AHN 9910 and ssp. nucleatum AHN 9508) were cultured and incubated with four different test concentrations of recombinant HNP-1 (1, 5, 10 and 20 µg/ml) and one control group (0 µg/ml). Bacterial pellets from each concentration were processed for TEM imaging. Planktonic growth was assessed and colony forming units (CFU) were measured to determine the cellular proliferation. Scrambled HNP-1 was used for confirmation. Results: TEM analyses revealed a decrease in the outer membrane surface corrugations and roughness of the strain AHN 9508 with increasing HNP-1 concentrations. In higher concentrations of HNP-1, the strain AHN 9910 showed thicker outer membranes with a number of associated rough vesicles attached to the outer surface. For ATCC 25586, the treated bacterial cells contained higher numbers of intracellular granules with increasing the peptide concentration. Planktonic growth of the two clinical strains were significantly enhanced (P<0.001) with gradually increased concentrations of HNP-1. None of the planktonic growth results of the 3 strains incubated with the scrambled HNP-1 was statistically significant. HNP-1 decreased the biofilm formation of the two clinical strains, AHN 9910 and 9508, significantly (P<0.01 and P<0.001; respectively). Conclusions: The present in vitro study demonstrates that F. nucleatum has the ability to withstand the lethal effects of HNP-1 even at concentrations simulating the diseased periodontium in vivo. The increase in planktonic growth could act as defense mechanisms of F. nucleatum against HNP-1.
Resumo:
PhotoAcoustic Imaging (PAI) is a branch in clinical and pre-clinical imaging, that refers to the techniques mapping acoustic signals caused by the absorption of the short laser pulse. This conversion of electromagnetic energy of the light to the mechanical (acoustic) energy is usually called photoacoustic effect. PAI, by combining optical excitation with acoustical detection, is able to preserve the diffraction limited spatial resolution. At the same time, the penetration depth is extended beyond the diffusive limit. The Laser-Scanning PhotoAcoustic Microscope system (LS-PAM) has been developed, that offers the axial resolution of 7.75 µm with the lateral resolution better than 10 µm. The first in vivo imaging experiments were carried out. Thus, in vivo label-free imaging of the mouse ear was performed. The principle possibility to image vessels located in deep layers of the mouse skin was shown. As well as that, a gold printing sample, vasculature of the Chick Chorioallantoic Membrane Assay, Drosophila larvae were imaged by PAI. During the experimental work, a totally new application of PAM was found, in which the acoustic waves, generated by incident light can be used for further imaging of another sample. In order to enhance the performance of the presented system two main recommendation can be offered. First, the current system should be transformed into reflection-mode setup system. Second, a more powerful source of light with the sufficient repetition rate should be introduced into the system.
Resumo:
In this doctoral thesis, a tomographic STED microscopy technique for 3D super-resolution imaging was developed and utilized to observebone remodeling processes. To improve upon existing methods, wehave used a tomographic approach using a commercially available stimulated emission depletion (STED) microscope. A certain region of interest (ROI) was observed at two oblique angles: one at a standard inverted configuration from below (bottom view) and another from the side (side view) via a micro-mirror positioned close to the ROI. The two viewing angles were reconstructed into a final tomogram. The technique, named as tomographic STED microscopy, was able to achieve an axial resolution of approximately 70 nm on microtubule structures in a fixed biological specimen. High resolution imaging of osteoclasts (OCs) that are actively resorbing bone was achieved by creating an optically transparent coating on a microscope coverglass that imitates a fractured bone surface. 2D super-resolution STED microscopy on the bone layer showed approximately 60 nm of lateral resolution on a resorption associated organelle allowing these structures to be imaged with super-resolution microscopy for the first time. The developed tomographic STED microscopy technique was further applied to study resorption mechanisms of OCs cultured on the bone coating. The technique revealed actin cytoskeleton with specific structures, comet-tails, some of which were facing upwards and some others were facing downwards. This, in our opinion, indicated that during bone resorption, an involvement of the actin cytoskeleton in vesicular exocytosis and endocytosis is present. The application of tomographic STED microscopy in bone biology demonstrated that 3D super-resolution techniques can provide new insights into biological 3D nano-structures that are beyond the diffraction-limit when the optical constraints of super-resolution imaging are carefully taken into account.
Resumo:
Under subtropical and tropical environments soybean seed (Glycine max (L.) Merrill) are harvested early to avoid deterioration from weathering. Careful after-harvest drying is required and is an important step in maintaining the physiological quality of the seed. Soybean seed should be harvested when the moisture content is in a range of 16-20%. Traditional drying utilizes a high temperature air stream passed through the seed mass without dehumidification. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the seed. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is passed through the seed mass at the same environmental temperature. Two studies were conducted to evaluate the performance of HPT for dry soybean seed. In the first study the seeds were dried from 17.5 to 11.1% in 2 hours and 29 minutes and in the second sudy the seeds were dried from 22.6 to 11.9% in 16 hours and 32 minutes. This drying process caused no reduction in seed quality as measured by the standard germination, tetrazolium-viability, accelerated aging and seedling vigor classification tests. The only parameter that indicated a slight seed quality reduction was tetrazolium vigor in the second study. It was concluded that the HPT system is a promising technology for drying soybean seed when efficiency and maintenance of physiological quality are desired.
Resumo:
The moisture content of peanut kernel (Arachis hypogaea L.) at digging ranges from 30 to 50% on a wet basis (w.b.). The seed moisture content must be reduced to 10.5% or below before seeds can be graded and marketed. After digging, peanuts are cured on a window sill for two to five days then mechanically separated from the vine. Heated air is used to further dry the peanuts from approximately 18 to 10% moisture content w.b. Drying is required to maintain peanut seed and grain quality. Traditional dryers pass a high temperature and high humidity air stream through the seed mass. The drying time is long because the system is inefficient and the high temperature increases the risk of thermal damage to the kernels. New technology identified as heat pipe technology (HPT) is available and has the unique feature of removing the moisture from the air stream before it is heated and passed through the seed. A study was conducted to evaluate the performance of the HPT system in drying peanut seed. The seeds inside the shells were dried from 17.4 to 7.3% in 14 hours and 11 minutes, with a rate of moisture removal of 0.71% mc per hour. This drying process caused no reduction in seed quality as measured by the standard germination, accelerated ageing and field emergence tests. It was concluded that the HPT system is a promising technology for drying peanut seed when efficiency and maintenance of physiological quality are desired.
Resumo:
The objective of this study was to verify the effect of drying on germination of cupuassu (Theobroma grandiflorum (Willd. ex Spreng) K. Schum.) seeds. Desiccation was in forced air oven, with temperature ranging from 23 to 33ºC. Sowing was carried out at 0.5cm of depth in plastic trays in sand and sawdust mixture (1:1), previously sterilized in hot water (100ºC), during 2h. Seeds were left to germinate in a laboratory with no temperature and relative humidity control, under natural light. It was quantified the seed moisture content, in four replications of 10 seeds; the germination percentage, performed during 30 days, with daily counts of the number of germinated seeds; the germination speed index; and number of days to the germination onset. The experimental design was completely randomized with four replications of 25 seeds. The reduction of moisture content from 58.6 to 37.8% did not affect seed germination and germination speed index; however, they were affected when moisture content was reduced to values below 30.7%. It was observed that only when moisture content was 16.1% seeds demanded more days to begin germination. Cupuassu seeds are classified as recalcitrant and they can be desiccated up to 37.8% with no reduction on germination.
Resumo:
This experiment viewed to evaluate the physiological quality of grain sorghum seeds as well as to determine the respective drying curve of each of three drying methods. The seeds harvested at 18.9%, 18.1%, and 18.2% of moisture content were submitted to the following drying methods : a) under natural conditions, b) an intermittent dryer in which the combustion of firewood was the source of caloric energy, and c) a stationary dryer in which the source of caloric energy was the burning of liquefied petroleum gas. The experimental design was a completely randomized one with 25 repetitions of one hundred seeds each. The water contents and weight of one thousand seeds were evaluated. Seeds physiological quality was evaluated by germination and vigor tests. Seed drying rates were of 0.11, 1.25, and 0.55 percent points per hour (pph -1) for the natural, intermittent and stationary drying methods, respectively. The intermittent treatment permits the highest loss of water in the shortest period of time, and germination and vigor remaining unchanged.
Resumo:
Seeds of Magnolia ovata were dried to different water contents to assess the viability and transcript abundance of genes related to seed development, cell cycle, cytoskeleton and desiccation tolerance.The expression of development, cell cycle and cytoskeleton relative genes (ABI3, CDC2-like and ACT2) alone could not explain the germination behaviour of M. ovata seeds in relation to drying damage. Irrespective of their initial water content, the seeds performed in the same way during the initial period of germination and the deleterious effects of desiccation only occurred in later stages. Expression of PKABA1, sHSP17.5 and 2-Cys-PRX did not show a relationship with desiccation. However, the expression patterns of PKABA1 and sHSP17.5 suggested the participation of these genes in protective mechanisms during the imbibition of M. ovata seeds.
Resumo:
Optical microscopy is living its renaissance. The diffraction limit, although still physically true, plays a minor role in the achievable resolution in far-field fluorescence microscopy. Super-resolution techniques enable fluorescence microscopy at nearly molecular resolution. Modern (super-resolution) microscopy methods rely strongly on software. Software tools are needed all the way from data acquisition, data storage, image reconstruction, restoration and alignment, to quantitative image analysis and image visualization. These tools play a key role in all aspects of microscopy today – and their importance in the coming years is certainly going to increase, when microscopy little-by-little transitions from single cells into more complex and even living model systems. In this thesis, a series of bioimage informatics software tools are introduced for STED super-resolution microscopy. Tomographic reconstruction software, coupled with a novel image acquisition method STED< is shown to enable axial (3D) super-resolution imaging in a standard 2D-STED microscope. Software tools are introduced for STED super-resolution correlative imaging with transmission electron microscopes or atomic force microscopes. A novel method for automatically ranking image quality within microscope image datasets is introduced, and it is utilized to for example select the best images in a STED microscope image dataset.